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1 Equivalence relations

Let X be a set.

Definition 1. An equivalence relation on the set X is a binary relation ∼ such that it is

1. reflexive: ∀x ∈ X, x ∼ x

2. symmetric: ∀x, y ∈ X, if x ∼ y, then y ∼ x

3. transitive: ∀x, y, z ∈ X, if x ∼ y and y ∼ z, then x ∼ z.

Example 2. Let X = Z = {0,±1,±2, . . .} and define the relation

m ∼ n for m,n ∈ Z ⇔ m− n is even

Claim: ∼ is an equivalency relation.
Proof. First of all, we re-state the equivalence relation to have a clearer idea of what we need to

prove: the equivalence relation ∼ is saying that two integers m,n ∈ Z are equivalent if and only if

m− n is divisible by 2, i.e. the difference can be written as m− n = 2k for some k ∈ Z

We need to check the three properties listed above:

1. reflexive: ∀ n ∈ Z we have that n− n = 0 = 2 · 0, therefore n ∼ n.

2. symmetric: ∀ m,n ∈ Z such that m ∼ n (meaning m− n = 2k for some k ∈ Z), we have

n−m = −(m− n) = −(2k) = 2 · (−k),

therefore n ∼ m.

3. transitive: ∀ `,m, n ∈ Z such that ` ∼ m (meaning ` − m = 2k for some k ∈ Z) and m ∼ n
(meaning m− n = 2h for some h ∈ Z), we have

`− n = `− n + m−m = (`−m) + (m− n) = 2k + 2h = 2(k + h),

therefore ` ∼ n.
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Definition 3. The set of elements in X that are all equivalent between each other is called equiv-
alence class and it is denoted as

[x]∼ :=

{
y ∈ X

∣∣∣∣ x ∼ y

}
.

The collection of all the equivalence classes that can be found via an equivalence relation is called
quotient set and it is denoted X/∼.

Example 4 (cont’d). One equivalence class in the set (Z,∼) is for example

[1]∼ =

{
n ∈ Z

∣∣∣∣ n ∼ 1

}
=

{
n ∈ Z

∣∣∣∣ n− 1 is even

}
=

{
n ∈ Z

∣∣∣∣ n = odd

}
=

{
2k + 1

∣∣∣∣ k ∈ Z
}

Another one (and there are no more) is

[0]∼ =

{
n ∈ Z

∣∣∣∣ n ∼ 0

}
=

{
n ∈ Z

∣∣∣∣ n− 0 is even

}
=

{
n ∈ Z

∣∣∣∣ n = even

}
=

{
2k

∣∣∣∣ k ∈ Z
}

The quotient set is Z/∼ = {[0], [1]}. It is a well-known set and it is denoted as Z2.

An equivalence relation ∼ within a set X can be thought as sorting all the elements of the set
X and grouping them into boxes according to a certain common characteristic (which is described
by the equivalence relation itself). Each box is an equivalence class.

Clearly, all the elements that we put in one box (i.e. all the elements that are equivalent between
each other, that share a common feature) are not equivalent to any other element from another
box (they have different features).

Mathematically speaking, introducing an equivalence relation means to construct a partition of
the set X (i.e. diving the set X into different boxes).

Definition 5. A partition P on a set X is a collection of non-empty subsets S of X such that

1. X =
⋃

S∈P S

2. if two subsets of the partition S1 and S2 have a common element (S1 ∩ S2 6= ∅), then they are
the same subset S1 = S2.

Proposition 6. The function f : X → X/∼, that maps x 7→ [x]∼, is surjective.

Remark 7. The proposition claims that every element x ∈ X belongs to one (and only one!)
equivalence class. In particular, x ∈ X cannot belong simultaneously to two different equivalence
classes (“boxes”).

2 The rational numbers

Consider the set

X = Z× (Z\{0}) =

{
(a, b)

∣∣∣∣ a, b ∈ Z, b 6= 0

}
and introduce the equivalence relation

(a, b) ∼ (c, d) ⇔ ad = bc
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Claim: ∼ is an equivalence relation.
Proof: in this case there is no need to rewrite the equivalence relation, because it is already

quite explicit.
We now check the three properties of an equivalence relation:

1. reflexive: ∀ (a, b) ∈ X we have that ab = ba, therefore (a, b) ∼ (a, b).

2. symmetric: ∀ (a, b), (c, d) ∈ X such that (a, b) ∼ (c, d) (meaning ad = bc), we have

cb = da,

therefore (c, d) ∼ (a, b).

3. transitive: ∀ (a, b), (c, d), (e, f) ∈ X such that (a, b) ∼ (c, d) (meaning ad = bc) and (c, d) ∼ (e, f)
(meaning cf = de), we have

ad− bc = 0

cf − de = 0;

now multiply the first equation by f and the second one by b:

adf − bcf = 0

bcf − bde = 0

and add them together:

adf − bcf + bcf − bde = adf − bde = d(af − be) = 0;

since d 6= 0 (d is the second element in the pair (c, d) ∈ X), we have

af − be = 0, i.e. af = be,

therefore (a, b) ∼ (e, f).

Definition 8. The set of rational numbers Q is the quotient set Z× (Z\{0}) /∼. Each element
in Q is an equivalence class of the form

[(a, b)]∼ =

{
(c, d) ∈ Z× (Z\{0})

∣∣∣∣ ad = bc

}
and it will denoted as

[(a, b)]∼ =:
a

b

Remark 9. The set of integers Z is a subset of Q via the map n→ [(n, 1)]∼ =: n
1

Important facts about Q:

• Q can equipped with two operations called sum + and product · (the usual sum and product)
such that (Q,+, ·) is a field (Definition 1.1.5 from the book).
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• Q has a natural ordering relation

p

q
<

m

n
, for

p

q
,
m

n
∈ Q ⇔ m

n
− p

q
> 0

Moreover, this relation is compatible with the field structure, meaning that (Q,+, ·;<)
is an ordered field. (Definition 1.1.7 from the book).

• Q is not complete, i.e. it does not satisfy the least-upper-bound property (Definition 1.1.3
from the book).

What now? The next step is to look for a “bigger” set that contains Q and has all the properties
of Q, i.e. an ordered field, with the additional property to be also complete.

Does it exist? Is there more than one set that we can define in this way? If there are more,
what’s the difference between them?
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