Addendum – Construction of \mathbb{R} via Dedekind's method

Manuela Girotti

MATH 317-01 Advanced Calculus of one variable

The goal is to find a set F such that

- 1. $\mathbb{Q} \subset F$
- 2. F is an ordered set: (F, <)
- 3. F is equipped with a sum + and a product \cdot such that $(F, +\cdot)$ is a field and it is compatible with the ordering relation
- 4. F has the least upper bound property.

The simple idea due to R. Dedekind relies on the observation that every real number α is completely determined by all the rational numbers that are less than α and all the rational numbers that are greater or equal than α .

Step 0

We start with the obvious statement that $\forall r \in \mathbb{Q}, r$ divides the set \mathbb{Q} into two subsets

$$L_r := \left\{ q \in \mathbb{Q} \mid q < r \right\}$$
$$U_r := \left\{ q \in \mathbb{Q} \mid q \ge r \right\}$$

Definition 1. For each $r \in \mathbb{Q}$, we call **Dedekind cut** the pair (L_r, U_r) .

Remark 2. L_r doesn't have a maximum (rational) number, while U_r does have a minimum (rational) number and it is precisely the number r.

Proposition 3. The map

$$\mathcal{D}: \mathbb{Q} \to \{ \text{Dedekind cuts} \}$$
$$r \mapsto (L_r, U_r)$$

is a bijection.

Step 1

Definition 4. A (general) Dedekind cut $\alpha = (L_{\alpha}, U_{\alpha})$ is a subdivision of \mathbb{Q} into two non-empty subsets L_{α} (lower interval) and U_{α} (upper interval) such that

- (a) L_{α} has no maximum
- (b) $\forall x \in L_{\alpha}, y \in U_{\alpha}$ we have x < y

Remark 5. U_{α} could have minimum or not.

In particular, if U_{α} has minimum, then α is a rational number, $\alpha \in \mathbb{Q}$ $((L_{\alpha}, U_{\alpha})$ is a Dedekind cut as defined in Step 0). If U_{α} does not have a minimum, then we say that α is irrational.

Example 6. Consider $\alpha = (L_{\alpha}, U_{\alpha})$ defined as

$$L_{\alpha} := \left\{ q \in \mathbb{Q} \mid q < 0 \right\} \cup \left\{ q \in \mathbb{Q} \mid q > 0, q^{2} < 2 \right\}$$
$$U_{\alpha} := \left\{ q \in \mathbb{Q}_{+} \mid q^{2} \ge 2 \right\}$$

Then, α is a (general) Dedekind cut, the minimum of U_{α} doesn't exist in \mathbb{Q} . A posteriori (once we'll be done with the construction of \mathbb{R}), we can say that α is actually the number $\sqrt{2}$.

Step 2

Definition 7. We define the set of **real numbers** \mathbb{R} as

$$\mathbb{R} := \{ \text{Dedekind cuts } \alpha = (L_{\alpha}, U_{\alpha}) \}$$

with the ordering relation

$$\alpha < \beta$$
 for any $\alpha, \beta \in \mathbb{R} \quad \Leftrightarrow \quad L_{\alpha} \subset L_{\beta}$.

<u>Conclusion</u>. $(\mathbb{R}, <)$ is an ordered set that contains \mathbb{Q} . Indeed,

```
\mathbb{Q} \leftrightarrow \{ \text{rational Dedekind cuts } r = (L_r, U_r) \} \hookrightarrow \{ \text{Dedekind cuts } \alpha = (L_\alpha, U_\alpha) \} = \mathbb{R}
```

where \leftrightarrow means that the map is a bijection and \hookrightarrow means that the map is injective (it's an inclusion map).

Step 3

Define two operations + (sum) and \cdot (product).

$$L_{\alpha} \qquad (mystery \#) \qquad U_{\alpha}$$

Sum.
$$\forall \alpha, \beta \in \mathbb{R}$$

$$\begin{aligned} \alpha + \beta &:= \left\{ x + y \mid x \in L_{\alpha}, y \in L_{\beta} \right\} \\ 0 &:= \left\{ q \in \mathbb{Q} \mid q < 0 \right\} \\ -\alpha &:= \left\{ q \in \mathbb{Q} \mid \exists r > 0 \text{ such that } -q - r \in U_{\alpha} \right\} \end{aligned}$$

With these definitions we need to check that (*exercise*)

- 1. + is commutative and associative
- 2. 0 is indeed the zero of the sum, i.e. $0+\alpha=\alpha ~\forall~\alpha\in \mathbb{R}$
- 3. $-\alpha$ is the inverse of α for the sum, i.e. $\alpha + (-\alpha) = 0 \ \forall \ \alpha \in \mathbb{R}$.

Additionally, we need to check the compatibility with the ordering relation:

$$\forall \ \alpha, \beta, \gamma \in \mathbb{R} \text{ such that } \alpha < \beta, \text{ then } \alpha + \gamma < \beta + \gamma.$$

Product. First define the product for positive real numbers, i.e. $\forall \alpha, \beta \in \mathbb{R}_+ := \left\{ \alpha \in \mathbb{R} \mid \alpha > 0 \right\}$ (where the 0 is the one defined above)

$$\begin{aligned} \alpha \cdot \beta &:= \left\{ x \cdot y \mid x > 0, y > 0; \ x \in L_{\alpha}, y \in L_{\beta} \right\} \\ 1 &:= \left\{ q \in \mathbb{Q} \mid q < 1 \right\} \\ \alpha^{-1} &:= \left\{ q \in \mathbb{Q} \mid q > 0, \exists r > 0 \text{ such that } \frac{1}{q} - r = q^{-1} - r \in U_{\alpha} \right\} \end{aligned}$$

With these definitions we need to check that (*exercise*)

- 1. \cdot is commutative and associative
- 2. 1 is indeed the identity of the product, i.e. $1 \cdot \alpha = \alpha \, \forall \, \alpha \in \mathbb{R}$
- 3. α^{-1} is the inverse of α for the product, i.e. $\alpha \cdot \alpha^{-1} = 1 \ \forall \ \alpha \in \mathbb{R}$.

Additionally, we need to check the compatibility with the ordering relation:

 $\forall \ \alpha,\beta \in \mathbb{R} \text{ such that } \alpha,\beta>0, \text{ then } \alpha\cdot\beta>0.$

Now we extend the product rule to the 0 and the negative α 's by setting

$$0 \cdot \alpha = 0 \qquad \forall \ \alpha \in \mathbb{R}$$

and

$$\alpha \cdot \beta = \begin{cases} (-\alpha) \cdot (-\beta) & \alpha < 0, \beta < 0\\ -\left[(-\alpha) \cdot \beta\right] & \alpha < 0, \beta > 0\\ -\left[\alpha \cdot (-\beta)\right] & \alpha > 0, \beta < 0 \end{cases}$$

And we check the distributive rule.

<u>Conclusion</u> ($\mathbb{R}, +, \cdot; <$) is an ordered field.

Step 4

 \mathbb{R} has the least-upper-bound-property, i.e. for any subset $S \subseteq \mathbb{R}$ bounded above there exists $\sup S \in \mathbb{R}$.

Proof. Set

$$\gamma = (L_{\gamma}, U_{\gamma}) := \left(\bigcup_{\alpha \in S} L_{\alpha}, \bigcap_{\alpha \in S} U_{\alpha}\right),$$

then $\gamma \in \mathbb{R}$ (i.e. γ is a Dedekind cut) because

(a) L_{α} has no maximum for all α 's, therefore $L_{\gamma} := \bigcup_{\alpha \in S} L_{\alpha}$ doesn't have maximum either

(b) $\forall x \in L_{\gamma}, y \in U_{\gamma}$, we have that

$$x \in L_{\gamma} = \bigcup_{\alpha \in S} L_{\alpha} \quad \Rightarrow \quad \exists \ \bar{\alpha} \in S \text{ such that } x \in L_{\bar{\alpha}}$$

and

$$y \in U_{\gamma} = \bigcap_{\alpha \in S} U_{\alpha} \quad \Rightarrow \quad y \in U_{\alpha} \; \forall \; \alpha \in S, \text{ in particular } y \in U_{\bar{\alpha}}$$

therefore the couple (x, y) belongs to the Dedekind cut $\bar{\alpha} = (L_{\bar{\alpha}}, U_{\bar{\alpha}})$, meaning x < y.

 γ is an upper bound for S, because $\forall \alpha \in S$ we have $L_{\alpha} \subseteq \bigcup_{\alpha \in S} L_{\alpha} = L_{\gamma}$, therefore $\alpha \leq \gamma$.

Furthermore, γ is the least upper bound: consider any other upper bound $\tilde{\gamma}$ for S, then $\alpha \leq \tilde{\gamma}$ $\forall \alpha \in S$, meaning $L_{\alpha} \subseteq L_{\tilde{\gamma}}$. Taking the union on the left hand side over all the α 's we get: $L_{\gamma} = \bigcup_{\alpha \in S} L_{\alpha} \subseteq L_{\tilde{\gamma}}$, implying $\gamma \leq \tilde{\gamma}$ (i.e. γ is the smallest upper bound of all).

<u>Conclusion</u>. We found what we wanted: $(\mathbb{R}, +, \cdot; <)$ is a complete (i.e. it has the least-upper-bound property) ordered field containing \mathbb{Q} .

Last note. Is \mathbb{R} the only field with such properties that we can construct? The short answer (*unproved for now*) is that \mathbb{R} is the unique field with all these properties, up to isomorphism (a continuous bijection that preserves the sum, product and ordering of the elements).