
Diophantine equations

Manuela Girotti

MATH 250 Fundamentals of Math

These notes are based on M. Girotti’s personal notes from the course “Precorso” given at
Università degli Studi di Milano in far 2005.

We will first review some known results on integer numbers and the Division Theorem, which
will prepare us to learn how to solve a Diophantine equation.

1 Integers and the Division Theorem

We denote by Z the set of all integers:

Z := {0,+1,−1,+2,−2, . . .}

Definition 1. Given two integers a, b ∈ Z, a, b ̸= 0, we say that b divides a or that b is a divisor
of a if

∃ k ∈ Z such that a = b · k .

In this case, we can use the symbol b|a.

An easy observation is the following: given a, b ∈ Z, if a divides b and b divides a, then a = b
or a = −b:

a|b ∧ b|a ⇒ a = b ∨ a = −b .

Indeed, if a|b, then b = a · k for some k ∈ Z; similarly, if b|a, then a = b · k′ for some k′ ∈ Z. Then,
we have

a = b · k′ = (a · k) · q′ = akk′ i.e. kk′ = 1 (since a ̸= 0)

and the only integers whose product is equal to one are 1 or −1.

Theorem 2 (Division Theorem). Given two integers a, b ∈ Z and b > 0, there exist unique
integers q ∈ Z (the ”quotient”) and r ∈ Z (the ”remainder”) such that

a = bq + r , and 0 ≤ r < b .

Proof. See the proof in Section 5.3 of our textbook.

Note that we can relax the assumption that b > 0, by just requiring b ̸= 0 and 0 ≤ r < |b|.
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Examples.

• given 34 and 7, then 34 = 7 · 4 + 6

• given −34 and 7, then −34 = 7 · (−5) + 1

• given 34 and −7, then 34 = (−7) · (−4) + 6

• given −34 and −7, then −34 = (−7) · 5 + 1

Definition 3. Given a, b ∈ Z, not both zero, the greatest common divisor d of a and b (denoted
gcd(a, b)) is the largest positive integer such that

1) d divides both a and b: d|a ∧ d|b

2) any other number c that divides both a and b, c divides d as well: if c|a and c|b, then c|d.

If either a or b is zero, then we set gcd(a, 0) = |a| (similarly gcd(0, b) = |b|).

The fundamental result about the greatest common divisor is the following:

Theorem 4. Let a, b ∈ Z, not both zero. Then, the greatest common divisor gcd(a, b) exists and it
is unique.

The proof of Theorem 4 is constructive and it relies on the so called

Euclidean Algorithm

Step 1. Arrange a, b so that a ≥ b

Step 2. Use the Division Theorem to find q, r ∈ Z such that a = bq + r and 0 ≤ r < |b|

Step 3. If r = 0, we stop. And we get gcd(a, b) = gcd(b, 0) = |b|

Step 4. If r ̸= 0, we swap (a, b) with (b, r) and return to Step 1.

That is, we repeatedly apply the Division Theorem 2 to get

a = bq(1) + r(1) where q(1), r(1) ∈ Z , 0 ≤ r(1) < b

b = r(1)q(2) + r(2) where q(2), r(2) ∈ Z , 0 ≤ r(2) < r(1)

r(1) = r(2)q(3) + r(3) where q(3), r(3) ∈ Z , 0 ≤ r(3) < r(2)

r(2) = . . .

The algorithm will eventually stop, say after n steps, because each new remainder is strictly smaller
than the previous one:

. . .

r(n−2) = r(n−1)q(n) + r(n)

r(n−1) = r(n)q(n+1) + 0

Then, the great common divisor is

r(n) = d = gcd(a, b) .

This iterative method that relies on the simple fact that

2



Lemma 5. If d is the greatest common divisor of a and b and a = bq+r, then d is also the greatest
common divisor of b and r.

Proof. Let d = gcd(a, b), then we know that d|a and d|b. This implies that d divides also any linear
combination of a and b, in particular d|a− bq, i.e. d|r. This shows that d is a common divisor of b
and r.

It remains to prove that d is the greatest common divisor of b and r. Let w ∈ Z+ such that w|b
and w|r, then w divides any linear combination of b and r, in particular w|bq + r, i.e. w|a. This
implies that w|d, since d = gcd(a, b).

Proof of Theorem 4. The existence follows from Lemma 5 and the Euclidean Algorithm. The proof
of uniqueness is left as an exercise.

Example. Let a = 9180 and b = 1122.

9180 = 1122 · 8 + 204

1122 = 204 · 5 + 102

204 = 102 · 2 + 0

Thus, gcd(9180, 1122) = 102.

Proposition 6. Given two positive integers a, b ∈ Z, not both zero, let d be the great common
divisor of a and b: d = gcd(a, b). Then, there exists x, y ∈ Z such that

d = ax+ by .

Equivalently, d is a linear combination of a and b with integer coefficients.

The proof again lies on the Euclidean Algorithm and it is constructive: by following all the
steps of the proof we can find the two integers x, y ∈ Z that solve the equation d = ax+ by.

Proof. We know that in order to find the great common divisor d of a and b, we need to apply the
Euclidean Algorithm of successive divisions:

a = bq + r

b = rq′ + r′

r = r′q′′ + r′′

r′ = . . .

The algorithm will eventually stop, say after n steps:

. . .

r(n−2) = r(n−1)q(n) + r(n)

r(n−1) = r(n)q(n+1) + 0

where we recover the great common divisor

r(n) = d = gcd(a, b) .
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We now rewrite each equations above by highlighting the remainder, and we substitute in the
subsequent equations:

r = a− bq

r′ = b− rq′ = b− (a− bq)︸ ︷︷ ︸
r

q′ = a(−q′) + b
(
1 + qq′

)
r′′ = r − r′q′′ = (a− bq)︸ ︷︷ ︸

r

−
[
b− (a− bq)q′

]︸ ︷︷ ︸
r′

q′′ = a
(
1 + q′q′′

)
+ b

(
−q − q′′ − qq′q′′

)
...

r(n) = r(n−2) − r(n−1)q(n) = . . . = a
(
some combination of q, q′, . . .

)
+ b

(
some other combination of q, q′, . . .

)
We can notice that each remainder r(k) can be expressed as a linear combination of a and b

with integer coefficients; in particular, we will have

d = r(n) = a
(
some combination of q, q′, . . .

)︸ ︷︷ ︸
=:x

+b
(
some other combination of q, q′, . . .

)︸ ︷︷ ︸
=:y

Example. Let a = 204 and b = 99. Then, gcd(204, 99) = 3: indeed,

204 = 99 · 2 + 6

99 = 6 · 16 + 3

6 = 3 · 2 + 0

therefore 3 is the greatest common divisor of 204 and 99.
Now we rearrange the equations to find x, y ∈ Z such that

3 = 204x+ 99y .

We start with the first equation

6 = 204 + 99 · (−2)

and we substitute in the second equation, and we expand:

3 = 99− 6 · 16
= 99− [204 + 99 · (−2)]︸ ︷︷ ︸

=6

·16

= 204 · (−16) + 99 · [1 + 2 · 16]
= 204 · (−16)︸ ︷︷ ︸

=:x

+99 · 33︸︷︷︸
=:y
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2 Diophantine Equations

Next, let’s consider a more general case: let a, b, c ∈ Z, with a, b ̸= 0. We are now looking for
integer solutions for the equation

ax+ by = c .

This type of equation is called (linear) Diophantine equation.
Changing perspective, we can reformulate the problem in a geometrical way: consider the

equation

c = ax+ by , or equivalently y = −a

b
x+

c

b
.

This is the equation of a line on the cartesian plane and we are wondering whether the line crosses
points whose coordinates are integers (see Figure 1).

−6 −4 −2 2 4 6

−6

−4
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2

4
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Figure 1: An example of a line in the cartesian plane y = −2
3x + 1

3 , with one integer solution
(5,−3).

Example. Let’s first look at some examples where we can easily find a solution.

• 6x+ 5y = 3 – by trial and error, we can guess a solution: x = 3, y = −3

• every time the number c happens to be gcd(a, b), we have a procedure to find a solution
(Proposition 6).

• 24x+ 16y = 7 – this equation cannot have a solution because if we divide both sides by the
gcd(24, 16) = 8, we find

3x+ 2y =
7

8
;

clearly, the sum of integers cannot add up to a fraction.

From the last example, it is clear that a necessary condition for a Diophantine equation to have
a solution is that the number c is divisible by gcd(a, b).

Proposition 7. Given a Diophantine equation ax + by = c, if it admits a solution, then c is
divisible by gcd(a, b).
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Proof. Given
ax̄+ bȳ = c ,

with (x̄, ȳ) ∈ Z×Z a solution to the Diophantine equation, and knowing that d = gcd(a, b), we can
rewrite the numbers a and b as

a = a0 · d aand b = b0 · d

for some a0, b0 ∈ Z (note that a0, b0 are coprimes). Therefore, the Diophantine equation becomes

a0dx̄+ b0dȳ = c i.e. d(a0x̄+ b0ȳ) = c .

The left hand side can be clearly divided by d and, since we have an equality, this implies that the
right hand side must also be divisible by d.

It turns out that c being divisible by gcd(a, b) is also a sufficient condition for having a solution
to the equation.

Proposition 8. Given a Diophantine equation ax + by = c, if c is divisible by gcd(a, b), then it
admits a solution.

Proof. The proof will be constructive.
Let d = gcd(a, b). Since c is divisible by d, we can write c = c0 · d, for some c0 ∈ Z. As in the

proof of Proposition 7, we can always write a and b as a = a0 · d and b = b0 · d.
Then, the Diophantine equation becomes

ax+ by = c0d .

In Proposition 6, we proved (constructively) that there exists a solution to the equation ax+by = d:
let (x̄, ȳ) ∈ Z be such a solution. Then,

(c0x̄, c0ȳ)

is a solution to the Diophantine equation ax+ by = c. Indeed,

a · c0x̄+ b · c0ȳ = c0 (ax̄+ bȳ)︸ ︷︷ ︸
=d

= c0d = c

In conclusion, we just proved the following theorem.

Theorem 9 (Existence of a solution). Given a, b, c ∈ Z, with a, b ̸= 0. The Diophantine
equation

ax+ by = c

has a solution if and only if c is divisible by gcd(a, b).

So far, we have no information on how many pairs of solutions (x̄, ȳ) exist: one? a handful?
several? The next theorem will answer this question.
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Theorem 10 (Set of solutions). Given a, b, c ∈ Z, with a, b ̸= 0. Consider the Diophantine
equation

ax+ by = c

and let (x̄, ȳ) be a solution.
Then, all solutions to the equation are of the form

(x̄+ b0n , ȳ − a0n) with n ∈ Z ,

where a0 =
a

gcd(a,b) and b0 =
b

gcd(a,b) .

Proof. We already have one solution (x̄, ȳ). We now need to prove two things:

1. (x̄+ b0n, ȳ − a0n) is another solution, for any choice of n ∈ Z

2. any other solution (x̃, ỹ) can be written as (x̄+ b0m, ȳ − a0m) for some m ∈ Z

The first point is easy to prove: we plug the pair (x̄+b0n, ȳ−a0n) into the equation and expand.

a(x̄+ b0n) + b(ȳ − a0n) = ax̄+ bȳ︸ ︷︷ ︸
=c

+ab0n− ba0n

= c+
���

���
a

b

gcd(a, b)
n−

���
���

b
a

gcd(a, b)
n

= c

Let’s assume now we have found another solution (x̃, ỹ):

ax̃+ bỹ = c ;

but also
ax̄+ bȳ = c .

Putting the two equations together we have

ax̃+ bỹ = ax̄+ bȳ i.e. a(x̃− x̄) = −b(ỹ − ȳ)

Recall that d = gcd(a, b) ( ̸= 0):

a0d(x̃− x̄) = −b0d(ỹ − ȳ) i.e. a0(x̃− x̄) = b0(ȳ − ỹ) .

The last equality implies that a0 divides the quantity b0(ỹ − ȳ) (indeed, it obviously divides the
left hand side); on the other hand, b0 cannot be divisible by a0 because a0 and b0 are coprimes (i.e.
only the number 1 divides both of them). Necessarily, we have that a0 divides ỹ− ȳ, meaning that
there exists an integer m ∈ Z such that ȳ − ỹ = a0m, i.e.

ỹ = ȳ − a0m .

We then substitute back into the equation:

a0(x̃− x̄) = b0(ȳ − ỹ)

= b0 [ȳ − (ȳ − a0m)]

= b0a0m

Simplifying a0, we get
x̃− x̄ = b0m i.e. x̃ = x̄+ b0m .
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Example. Find all the solutions to the following Diophantine equation:

207x+ 86y = 3

We start by looking for the gcd(207, 86) using the Euclidean algorithm:

207 = 86 · 2 + 35

86 = 35 · 2 + 16

35 = 16 · 2 + 3

16 = 3 · 5 + 1

3 = 1 · 3 + 0

therefore 1 is the greatest common divisor of 207 and 86 (these numbers are coprimes):

207 = 207︸︷︷︸
a0

·1 86 = 86︸︷︷︸
b0

·1

Clearly, 1 divides 3,
3 = 3︸︷︷︸

c0

·1 ,

therefore the equation admits solutions.
We solve the equation

207x+ 86y = 1

to find one solution, as we did in a previous example:

35 = 207 + 86 · (−2)

16 = 86− 35 · 2 = 86− [207 + 86 · (−2)]︸ ︷︷ ︸
=35

·2 = 207 · (−2) + 86 · 5

3 = 35− 16 · 2 = [207 + 86 · (−2)]︸ ︷︷ ︸
35

− (207 · (−2) + 86 · 5)︸ ︷︷ ︸
=16

·2 = 207 · 5 + 86 · (−12)

1 = 16− 3 · 5 = (207 · (−2) + 86 · 5)︸ ︷︷ ︸
=16

− (207 · 5 + 86 · (−12))︸ ︷︷ ︸
=3

·5 = 207 · (−27)︸ ︷︷ ︸
=:x̄

+86 · 65︸︷︷︸
=:ȳ

Finally, the solution to the original equation can be found by multiplying x̄, ȳ by c0 and adding/-
subtracting multiples of a0 and b0:(−27) · 3︸︷︷︸

c0

+ 86︸︷︷︸
b0

n , 65 · 3︸︷︷︸
c0

− 207︸︷︷︸
a0

·n

 = (−81 + 86n , 195− 207n) , n ∈ Z .

As a last remark, we can notice that since the Diophantine equation is linear, it is not surprising
that the set of solutions has the following expression:

(x̄ , ȳ)︸ ︷︷ ︸
particular solution

+ (b0n , −a0n)︸ ︷︷ ︸
homogeneous solutions

the pair (x̄, ȳ) is one particular solution to the equation ax+ by = c, while the pair (b0n,−a0n) (for
any n ∈ Z solves the associate homogeneous equation ax+ by = 0.
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Problems.

• A rabbit can make long jumps 8 metres in length, or short jumps 3 metres in length. A carrot
is lying 10 metres away. Is there a sequence of jumps that will allow the rabbit to land on
the carrot (and eat it)?

• The owner of a shoe store can buy shoes from his supplier in bundles of 14 or 35, and can sell
them in the same quantities. Is there a way to buy and sell bundles so that exactly 4 shoes
remain in the store at the end of the day?

• Sam needs 2.15$ to buy a large coffee. She only has 25-cent and 10-cent coins, and the cashier
insists that she pays with exact change. Is there a combination of these coins that will total
2.15$?

9


	Integers and the Division Theorem
	Diophantine Equations

