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1 Introduction and motivations

In the early 1800s Joseph Fourier developed a new type of series (that will later on take his name)
in his famous treatise on heat flow. We will give here a quick introduction of this very wide theory
that is Fourier Analysis.

Definition 1. A function f : [a,b] — R is said piece-wise continuous if it is continuous on [a, b]
except on a finite number of points a = xg < x2 < ... < x, = b where

lim  f(x) and lim  f(z)

x—(T4)+ e (xi—1)—
exist forallt =1,...,n.

Definition 2. A function f : R — R is periodic with period P > 0 if f(x + P) = f(x) for all
z eR.

Examples. The function f(x) = sin(z) or the function g(z) = cos(x) are both periodic function
with period P = 2. The function h(z) = tan(x) is a periodic function with period P = 7.

Definition 3. Given a positive function ¢ : [a, b] — Ry (we call it weight function), two functions
fyg: ]a,b] — R are said to be orthogonal with respect to the weight ¢ if

b
/ f(@)g(x) g(x)da = 0



For a given (positive) function ¢, it is often possible to find an infinite sequence of functions
{dn ()}, such that they are all mutually orthogonal between each other

b
/ On ()P (x) g(x)dz =0 if m # n.

If such a sequence exists, then it is called an orthogonal system of functions. Suppose that we
are also imposing that

b b
!
0< / On(x)dn(x) g(x)dx = / bn(z)? q(z)de =1
a a
then the orthogonal system is called an orthonormal system.

Example 1. The sequence of functions {¢,(z) = sin(nz)}, is an orthogonal system on the
interval [0, 7] with respect to the weight ¢(x) = 1: indeed, for any m,n € N (m # n)

" i —1 7rcos m—mn)x) —cos((m+n)zx)|dr =
| sintna)sinmajaz = 5 [ cos((m = n)a) = cos((m + n)a))

™

=0

1 [sin((m —n)x) sin((m+n)x)
2 m-—n m+n 0

Also, the sequence {\/g Sin(nzn)} . is an orthonormal system on [0, 7] with respect to the
n>

weight ¢(z) = 1.
Ezxercise: prove that this sequence is indeed an orthonormal system.

Remark 4. Given a (piece-wise continuous) function f : [a,b] — R, it is always possible to define
a new function f : R — R that is piece-wise continuous and periodic with period P = b — a (f 18
called periodic extension of f). This result is easily achievable by just “glueing” several copies
of f next to each other until it covers the whole real line.

Remark 5. If f : R — R is a periodic function of period P > 0, then the function g : R — R
defined as g(x) = f (gaf;) 1s periodic with period S > 0.

From now on, we will just consider periodic functions with period P = 27 and the function f
can be considered to be defined on the interval [a,b] = [—m, 7] and extended periodically to the
whole real line.

Example 2 [Trigonometric system]|. The sequence of functions

{1, cos(z), cos(2x), cos(3x), ..., sin(z), sin(2x), sin(3z), ...}

is an orthogonal system on [—, 7] with respect to the weight ¢(x) = 1.
Any finite combination of elements of this sequence

N
Tw(z) = % + 3 [an cos(nz) + by sin(nz)]

n=1

is called a trigonometric polynomial of degree N.



Remark 6. Clearly, Tn : R — R is a continuous and periodic function over the whole real line
with period P = 2.

Now we can pose some “reverse” questions:

1. If f: R — R is a 2m-periodic function, can we express it or approximate it as a trigonometric
polynomial of degree N for some N € N? This would mean

N
f(z) = Tn(x) + {error term} = % + Z [ay, cos(nz) + by, sin(nx)] 4+ {error term}

n=1
for some coefficients ag, {ay}, {bn}.

Remark 7. The setting looks similar to the one for the Taylor polynomials.

2. Also, if this is the case, what coefficients should we use?

3. Even more generally: suppose that the approximation gets better and better as we are taking
the degree of the polynomial bigger and bigger (N — +00). What can we say about this object:

Sp(z) = % + Z [a,, cos(nx) + by, sin(nz)]?

n=1
Does the series converges? For which z € R?

Would it be true that given a 2m-periodic function f we have the equality

Z ay, cos(nx) + by, sin(nx)]?
—1

2 Fourier Series

Let’s start with considering a piece-wise continuous function f : [—m, 7] — R and let’s assume that
indeed the equality

o
a .
flz) ==+ Z [a, cos(nx) + by, sin(nz)]
2
n=1
makes sense, meaning that there exists some coefficients ag, {a,} and {b,} such that f can be
written as a trigonometric series.
To find the coefficients explicitly, we use the property that the set of functions {1}U{cos(nz)}2 U
{sin(nz)}° ; is an orthogonal system.
First of all we integrate the function f itself (remember that f is piece-wise continuous, therefore

f e R([=m,7)):
i flx)dz = /7r

LA Y Z [an/ cos(nz)dz + bn/
n=1 -

—T

a | :
> + nzzzl [an, cos(nz) + by, sm(nx)]] dz

sin(nm)dx} — aom + i [an [Sinff‘”} :r + by [_COZW] :j

n=1

™

= agm



Therefore,

We integrate now the product of the function f with any other element of our trigonometric
(orthogonal) system: for any k € N,

f(z)sin(kz)dz = % T da: + Z [QNW-F by, / sin(nx) sin kx)dm}

T 1 — cos(2 2
:bk/ (sm(k‘m)) d$—bk/ de— 5 |:27T Sm(kx] = by

. . 2 2%
and
f(z) cos(kx)dz = ?W—i— Z [an/ cos(nz) cos(kx)dx + bn/ sin s(kxz)dx
—7 -7 n—1 —7
= ak/ (cos(kx))? de = agm
implying
1 (7 1 (7 .
ar = — f(z) cos(kx)dz and b, = — f(z)sin(kx)dx
™ J_r T J—x

Note 8. The equalities = is not automatic and it requires some theorems to be justified; in general
you need to prove that some conditions hold so that you can swap the integral with the series.

Definition 9. Given a function f : [—m, 7] — R, piece-wise continuous, the coefficients
1 (7 1 (7 1 /7
ap = — f(z)dz, ap = — f(x) cos(nz)dx and b, = — f(x)sin(nz)dx
) . T ) ) .

are called Fourier coefficients of the function f.
The trigonometric series built out combining the above coefficients and the trigonometric system

Sp(z) = % + Z [an, cos(nx) + by, sin(nz)]
n=1

is called Fourier series associated to the function f.

Remark 10. We can notice that since f is piece-wise continuous on [—m, x|, then f € R([m,7])
and therefore the Fourier coefficients are well-defined (f - cos, f -sin € R([m, 7])).



Example 1. Consider the function

and calculate its Fourier series.

Then,
1 ™ 0 s
ap = — f(z)dx = / (=1)dz + / (1)dz =0
T J-n ™ 0
1 ™ 0 ™
anp = — f(z) cos(nz)dx = / —cos(nz)dz + / cos(nz)dz =0
L — ™ 0
1 i 0 i
b, = — f(x)sin(nx)dx = / —sin(nx)dx +/ sin(nx)dz
T J—x 7r 0

0 - T 0 = 2k
_ 1 [cos(nac)] N 1 [ cos(nm)] _ 2 (1 — cos(nm)) = ) n - (even)
T n B s n g nm wony n=2k-1 (odd)

Therefore, the Fourier series associated to the function f above is equal to

4 o0

— —1x).

7r§ 2n sm 2n — 1)x)
n=1

Example 2. Consider the function f(x) = x? restricted over the interval [—m, 7] and calculate
its Fourier series.

Then,
1 [m 273 22
—_ — d _— =
%= / e
1 [, _ 1 2sm
an = — x“cos(nx)der = ...by parts... = — [z cos(nz)] x)dz
T ) s ™
2 —-1)"4
=3 27 cos(nm) = ( ng

1 s
by, = / x?sin(nx)dz =0

™J—x

Therefore, the Fourier series associated to the function f above is equal to

Sk( —+Z

Remark 11. Assume that we have the equality f(x) = Sp(z) for x € [—m,w| (this is indeed the
case; we will get there shortly), i.e.

cos(nzx).

n

cos(nx),

7T [e.e]
“FHL e



and evaluate the function at the endpoint x = 7:

w2 > )" 2 > 2 <1
7T = ? Z COb TL7T ? Z ? +4;n2
meaning
2T g
=n 6

Proposition 12. If a function is odd (i.e. f(—x) = —f(x)), then the coefficients a, = 0 for all
n € NU{0}.
If a function is even (i.e. f(—x) = f(x)), then the coefficients b, =0 for all n € N.

2.1 Fourier series over any interval

In general, Fourier series (with sine and cosine) can be defined over any interval [«, 3]. Let us
consider a function f(t) periodic with period 27 over the interval [—7, 7], then its Fourier series is
given as before

o0
?0 + Z:l ay cos(nt) + by sin(nt)]
n=

with

an = L/ f(t) cos(nt)dt and by, = 1 /7r f(t) sin(nt)dt.

™ J)_n T J—n
Let a, 8 € R (suppose o < [3) and define a new variable

_poa, fra tel-mm
YT Ton 2 € [=m,7]

or viceversa t = % (2z — f — ) (z € [o, f]). We can then perform a change of variable and
define a new function g : [, 8] — R as

Then, the Fourier transform of g is

+Z[ancm< a(2xﬁa))+bnsin<&(2xﬁa)>}

with




3 Point-wise convergence

Theorem 13 (Point-wise convergence). If f is a periodic function with period P = 2w and
both f and f' are piece-wise continuous on [—m, 7], then the Fourier series

+o00
Sp(z) = % + Z [an, cos(nx) + by, sin(nz)]

n=1

is convergent. Moreover, for any x € [—m, 7| where the function is continuous, we have the equality

+oo
f(z) = % + Z [an, cos(nx) + by, sin(nz)]
n=1
while for the points x € [—m, ] where the function is discontinuous (remember that we only have a
finite number of them and the left- and righ-side limits exist), we have

— + “+o0o
W = % + Z [an, cos(nz) + by, sin(n)]
n=1
Proof. The proof consists of showing that the sequence of partial sums is convergent and indeed it
converges to the value of the function f at the point = (or the average of the left- and right-side
limit). To achieve the result, we will use three Lemmas that will be stated and proved along the

way.

Lemma 14. For all n € NU {0}, we have

1 ™
an cos(nx) + by, sin(nx) = — f(x +t) cos(nt)dt
T

—T

- - —)dt
ao 7Tﬁﬂf(ﬂc )

Proof. 1t follows from the definition of the Fourier coefficients plus some smart manipulations:

an cos(nx) + by, sin(nx) = % _ﬂ f(t) [cos(nt) cos(nz) + sin(nt) sin(nx)] dt

= — _ﬂ f(#) cos(n(t —x))dt = 1 /ﬂx f(s+ z)cos(ns)ds = L/ f(z + s) cos(ns)ds

™ ™ J— (m—x) ™ J—x

where in the last equality we used the fact that if a function g has period P = 27, then fswﬂ g(t)dt =
J7_g(t)dt for any o € R. The same holds for the coefficients ay. O

Let’s consider now the sequence of partial sums:

N
Sn(x) = % + Z lar, cos(nx) + by, sin(nz)]

n=1

i N -
= 711/ flx+1) (; + Zcos(nt)) dt = % f(z+t)Dy(t)dt
n=1

—T —T



by Lemma 14. We introduced here a new function called Dirichlet’s kernel

1 N
=5 + 2:1 cos(nt)
n=

which has the following property:

Lemma 15.

Dy (z) VzelR
2sin (%)
Furthermore,
T 0
/ Dy (z)dz = E, Dy (x)dz = T
o 2 . 2
Proof. Indeed, we rewrite the cosine function into its exponential form cos(z) = % (there’s

a similar one for the sine function) and we use a result about geometric sums, namely Zr]:[:O q" =
1_ , provided that ¢ # 1. Let’s assume x # 0 (i.e. €@ # 1),

i(N+1)z

= 1 _ 1 inc —inx | _ 1 eix —e e_iiD — e_i(N+1)$

:% [H%sii(g) (—Qisin (%) +2isin<<N+;) x))] _ W

sin((N+3)z) _
251n(%)

NI

This formula is now clearly valid for £ = 0: we just need to calculate a limit: limxﬁo
sin((N—&—%)m) z (N—l—%)x
(N—i—%)z 2sin(%) T
The second batch of formulaegiven in the Lemma is just a matter of straightforward calculations.

O]

Getting back to the sequence of partial sums and using Lemma 15, we have

1 [ sin ((N + $)t)

== t dt

SN($) T 77rf($+ ) QSin(%)

Now, instead of proving that Sy (x) — w as N — 400, we will prove that
N +
/ fa Sln2(smz—t)) >dt N f(z )
2

sin ((N + %) ) flz™)
; f( t)————=—= (%) dt — —5



We will focus only on the first limit (the second one follows the same procedure): from Lemma 15
(the second batch of formulee),

sm (N +5)t) T f(x+1t) f(x
L PO 00
2sin (5) 25111

_ ;/0” g2 (1) sin ((N 4 ;)t) dt

T
fla+t) - 122

9a(1) = 2sin (1)
2

sin ((N + ;)t> dt

where

By the properties of f, g is piece-wise continuous for all ¢ € (0, 7]. Moreover,

f(=h) f=h)
t) — £&9) t) — {1
lim g,(t) = lim flet?) 2 m 1Y) 2 t

t—04 t—04 2sin (%) 50, t 2sin (%)

=D, f(x)

(the right-side derivative of f at the point z), meaning that g,(¢) is also well-defined in zero and
gz € R(]0,7]).

Lemma 16 (Riemann-Lebesgue Lemma). Let f € R([a,b]), then as A — +oo

i/oﬂ f)sin(At)dt =0 and i/oﬂ f(t) cos (At) dt — 0.

b
Proof. If f(t) = C a constant function, then it is obvious: |% Jo f(@)sin (At) dt| = % [7@;(”)}

Q\CI

<

a

— 0.

If f(z) = 0, Chlizy_1,24] 18 Plecewise constant (where {z;}{ is a partition of [a,b]), then the
K

same principle holds and we have |% Jo f(t)sin (At) di| < w — 0.

For a generic function that is Riemann-integrable f € R([a,b]), we know that we can find a

partition P that can approximate the value of the integral arbitrarily well: let € > 0 and call g(t)
the piecewise constant function that describes the lower sums of f with the partition P, then

o<1 /f Bdt — L(f, P /f dt—/ ()dt:i/oﬂ(f(t)—g(t))dt<e

(by construction f(t) — g(t) is a non-negative function).
In conclusion,

/ F(t) sin )\t)dt'

1/7T(f(t) (t))Sin()\t)dt‘+‘i/@wg(t)sin()\t)dt'

K K
/ |f |dt+x<€+>\—>0

(we take e smaller and smaller).
The same arguments hold for the “cos” version. O



Finally, thanks to Lemma 16, as N — 400 we have

1 [ sin (N + $)t) flat)y 1 (" , 1
7T/0 flz+1) ro—dt — —/0 ga:(t)31n<(N+2)t>dt—>0-

2sin (5) 2 T

The same holds for the convergence to @ O

4 The Gibb’s phenomenon

We start with the remark that a function f has a jump discontinuity of amplitude b at the point
r=cif
li —€) — =b
im (e =€) = flete)l

Viceversa, f is continuous at x = c if the limit above equals zero.

We will see that if a periodic function f is discontinuous, then its Fourier series behaves in a
strange way.

The behaviour is called Gibbs’ phenonemon and it says that the truncated Fourier series
(i.e. the Fourier trigonometric polynomial)

a N
Tn(x) = 50 + Y [an cos(nz) + by, sin(nx)]

n=1

near a jump discontinuity exceeds the jump by about 9% of the size of the jump, no matter how
big the order N of the polynomial is. This means that the entire Fourier series doesn’t match
the function very well in a neighbourhood of the discontinuity (not only at the discontinuity point
itself, where we know that the value of the Fourier series is equal to %, thanks to the
theorem above).

To study this phenomenon we will consider one simple example. Consider the “square wave”
function that we saw in Example 1:

fi]-mm] >R
fa) = {_1 xz € [-,0)

1 zel0,7]

periodically extended over the whole real line.

Since the jump discontinuity at x = 0 is equal to b = 1+ (—1) = 2, we will see that the peak
value of the Fourier series is about 0.18 (i.e. 9% of the value 2) higher than the maximum value of
the function f at the discontinuity point z = 0.

We already know its Fourier series:

and its truncated Fourier series (i.e. the Fourier trigonometric polynomial of degree N):

Tn(z) = %Z sin((2n — D)z) _ 4 <Sin(x) N sm(;w) L sin (é%v_—lm)) |

n=1

2n —1 T

10



Proposition 17. For all x € R
2sin(2Nzx
(T (a)) = 220CND),

m  sin(x)

Proof. We first take the derivative of the truncated Fourier series from the formula above

[Ty (z)] = % (cos(z) + cos(3x) + ... 4+ cos ((2N — 1)x))

and we use the equivalent expressions for sine and cosine functions (cos(z) = % and sin(x) =
, 4 [ e 4 i e3ir 4 —3iz e(2N=3)iz + e—(2N=3)iz e(2N—1)iz + e—(2N—1)iz
Tn(x)| = — + + ... +
AN—2
_ 2 _—@N-Di (1 L2 i AN +€(4N—2)i:c> _ 2 _—@N-Die 3 ()"
T T

n=0

this is a geometric sum with general term q = %% (and |g| = |€%*%| < 1), therefore its sum is equal

to

AN —2)ix —(2N-1)iz 2N—1)iz iz e 2N _g2Nix
— 26_(2]\[_1)”1 - e( ) 1 e ( ) - 6( ) 1 26 727:

T 1—e¥ g ieix (6‘“‘2;6”) T 1 e*(—sin(z))
_ 2sin(2Nz)
7 sin(z)

O]

In order to find the maximum value(s) of the function T (z) we study the zeroes of the derivative
and we can clearly see that the first zero of the derivative is for x = 5% . Since Tv(0) = 0 and the
terms in the sum for T (55 ) are all positive, we can conclude that z = J; is a maximum (it’s
actually a global maximum).

We know that f(5) = 1 (since z = 5 € [0,7]) and we want to calculate (or better, to
estimate) what is the value of the trigonometric polynomial T () at the point z = 5.

Remember that Tn(x) should approximate the “square-wave” function f(z) and eventually
should be equal to f(x) when N — +oo (i.e. when we get the full Fourier series and not just a

truncation of it).

3 . (2N—-1)m
T (w) , <7r)+sm(2’r)Jr +Sm IN
— ) =—|sin(-= —=
N\on oN 3 ON — 1
. ((2N-1)x N
4 7 [ sin (ﬁ) sin (5’—]7{,) S11 ( N ) 2
= T ot e | = 237 g (e, ) A
72N ﬁ %\r] (2N2N1)7r T jz_; j

the last expression is the Riemann sum using the midpoints of the partition P = {zg = 0,21 =
(N-1)m sin(z)

2 .
T2 =Ny, N1 =y, oy =7} and Ax = x; — x; 1 = § for the function g(z) = — .

11



The functions is Riemann integrable g € R([0, 7]) and therefore, as N ,* 400 (meaning, when
the partition gets finer and finer) we have

T _ 2 T sin(x)
7 () = snte)
N%Hiloo N 2N N%+OO ™ Zg Fmid, J /0 x o

All that?s left is to estimate is the value of the integral. For this we integrate the power series
for g(z) = bm(x) . We have that for all z € R

which gives

2 [T sin(x o 2 o= (1) /” 5 2 o= (=) [aHi”
“ 224y = 2 ) nqr = =
7T/O / Z 2n+1 v ;(2n+1)! o w§(2n+1)! 2+ 1],

-3 5.5 7.7

This series converges very rapidly and after five terms we have the value 1.18 correct to two decimal
places.

We have seen that as N gets large the maximum value of Tn(z) at z = ¢ (and & — 0)
becomes 1.18, which is 9% bigger than the value of the jump of f(x) at the same point in the limit
xz=0.

12
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Figure 1: Fourier series approximation to the square wave function. The number of terms in the
truncated Fourier sum is indicated in each plot, and the square wave is shown as a dashed line over
two periods.
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