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1 Introduction and motivations

In the early 1800s Joseph Fourier developed a new type of series (that will later on take his name)
in his famous treatise on heat flow. We will give here a quick introduction of this very wide theory
that is Fourier Analysis.

Definition 1. A function f : [a, b]→ R is said piece-wise continuous if it is continuous on [a, b]
except on a finite number of points a = x0 < x2 < . . . < xn = b where

lim
x→(xi)+

f(x) and lim
x→(xi−1)−

f(x)

exist for all i = 1, . . . , n.

Definition 2. A function f : R → R is periodic with period P > 0 if f(x + P ) = f(x) for all
x ∈ R.

Examples. The function f(x) = sin(x) or the function g(x) = cos(x) are both periodic function
with period P = 2π. The function h(x) = tan(x) is a periodic function with period P = π.

Definition 3. Given a positive function q : [a, b]→ R+ (we call it weight function), two functions
f, g : [a, b]→ R are said to be orthogonal with respect to the weight q if∫ b

a
f(x)g(x) q(x)dx = 0

1



For a given (positive) function q, it is often possible to find an infinite sequence of functions
{φn(x)}∞n=0 such that they are all mutually orthogonal between each other∫ b

a
φn(x)φm(x) q(x)dx = 0 if m 6= n.

If such a sequence exists, then it is called an orthogonal system of functions. Suppose that we
are also imposing that

0 <

∫ b

a
φn(x)φn(x) q(x)dx =

∫ b

a
φn(x)2 q(x)dx

!
= 1

then the orthogonal system is called an orthonormal system.

Example 1. The sequence of functions {φn(x) = sin(nx)}∞n=0 is an orthogonal system on the
interval [0, π] with respect to the weight q(x) = 1: indeed, for any m,n ∈ N (m 6= n)∫ π

0
sin(nx) sin(mx)dx =

1

2

∫ π

0
[cos((m− n)x)− cos((m+ n)x)] dx =

=
1

2

[
sin((m− n)x)

m− n
− sin((m+ n)x)

m+ n

]π
0

= 0

Also, the sequence
{√

2
π sin(nx)

}
n≥0

is an orthonormal system on [0, π] with respect to the

weight q(x) = 1.
Exercise: prove that this sequence is indeed an orthonormal system.

Remark 4. Given a (piece-wise continuous) function f : [a, b]→ R, it is always possible to define
a new function f̃ : R → R that is piece-wise continuous and periodic with period P = b − a (f̃ is
called periodic extension of f). This result is easily achievable by just “glueing” several copies
of f next to each other until it covers the whole real line.

Remark 5. If f : R → R is a periodic function of period P > 0, then the function g : R → R
defined as g(x) = f

(
P
S x
)

is periodic with period S > 0.

From now on, we will just consider periodic functions with period P = 2π and the function f
can be considered to be defined on the interval [a, b] = [−π, π] and extended periodically to the
whole real line.

Example 2 [Trigonometric system]. The sequence of functions

{1, cos(x), cos(2x), cos(3x), . . . , sin(x), sin(2x), sin(3x), . . .}

is an orthogonal system on [−π, π] with respect to the weight q(x) = 1.
Any finite combination of elements of this sequence

TN (x) =
a0
2

+
N∑
n=1

[an cos(nx) + bn sin(nx)]

is called a trigonometric polynomial of degree N .
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Remark 6. Clearly, TN : R → R is a continuous and periodic function over the whole real line
with period P = 2π.

Now we can pose some “reverse” questions:

1. If f : R → R is a 2π-periodic function, can we express it or approximate it as a trigonometric
polynomial of degree N for some N ∈ N? This would mean

f(x) = TN (x) + {error term} =
a0
2

+
N∑
n=1

[an cos(nx) + bn sin(nx)] + {error term}

for some coefficients a0, {an}, {bn}.

Remark 7. The setting looks similar to the one for the Taylor polynomials.

2. Also, if this is the case, what coefficients should we use?

3. Even more generally: suppose that the approximation gets better and better as we are taking
the degree of the polynomial bigger and bigger (N → +∞). What can we say about this object:

SF (x) =
a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)]?

Does the series converges? For which x ∈ R?

Would it be true that given a 2π-periodic function f we have the equality

f(x) =
a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)]?

2 Fourier Series

Let’s start with considering a piece-wise continuous function f : [−π, π]→ R and let’s assume that
indeed the equality

f(x) =
a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)]

makes sense, meaning that there exists some coefficients a0, {an} and {bn} such that f can be
written as a trigonometric series.

To find the coefficients explicitly, we use the property that the set of functions {1}∪{cos(nx)}∞n=1∪
{sin(nx)}∞n=1 is an orthogonal system.

First of all we integrate the function f itself (remember that f is piece-wise continuous, therefore
f ∈ R([−π, π])): ∫ π

−π
f(x)dx =

∫ π

−π

[
a0
2

+
∞∑
n=1

[an cos(nx) + bn sin(nx)]

]
dx

?
=
a0
2
· 2π +

∞∑
n=1

[
an

∫ π

−π
cos(nx)dx+ bn

∫ π

−π
sin(nx)dx

]
= a0π +

∞∑
n=1

[
an

[
sin(nx)

n

]π
−π

+ bn

[
− cos(nx)

n

]π
−π

]
= a0π
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Therefore,

a0 =
1

π

∫ π

−π
f(x)dx

We integrate now the product of the function f with any other element of our trigonometric
(orthogonal) system: for any k ∈ N,∫ π

−π
f(x) sin(kx)dx

?
=
a0
2 �������
∫ π

−π
sin(kx)dx+

∞∑
n=1

[
an

�����������∫ π

−π
cos(nx) sin(kx)dx+ bn

∫ π

−π
sin(nx) sin(kx)dx

]
= bk

∫ π

−π
(sin(kx))2 dx = bk

∫ π

−π

1− cos(2kx)

2
dx =

bk
2

[
2π − sin(2kx)

2k

]π
−π

= bkπ

and∫ π

−π
f(x) cos(kx)dx

?
=
a0
2 ��������
∫ π

−π
cos(kx)dx+

∞∑
n=1

[
an

∫ π

−π
cos(nx) cos(kx)dx+ bn

�����������∫ π

−π
sin(nx) cos(kx)dx

]
= ak

∫ π

−π
(cos(kx))2 dx = akπ

implying

ak =
1

π

∫ π

−π
f(x) cos(kx)dx and bk =

1

π

∫ π

−π
f(x) sin(kx)dx

Note 8. The equalities
?
= is not automatic and it requires some theorems to be justified; in general

you need to prove that some conditions hold so that you can swap the integral with the series.

Definition 9. Given a function f : [−π, π]→ R, piece-wise continuous, the coefficients

a0 =
1

π

∫ π

−π
f(x)dx, an =

1

π

∫ π

−π
f(x) cos(nx)dx and bn =

1

π

∫ π

−π
f(x) sin(nx)dx

are called Fourier coefficients of the function f .
The trigonometric series built out combining the above coefficients and the trigonometric system

SF (x) =
a0
2

+

∞∑
n=1

[an cos(nx) + bn sin(nx)]

is called Fourier series associated to the function f .

Remark 10. We can notice that since f is piece-wise continuous on [−π, π], then f ∈ R([π, π])
and therefore the Fourier coefficients are well-defined (f · cos, f · sin ∈ R([π, π])).
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Example 1. Consider the function

f(x) =

{
−1 x ∈ [−π, 0)

1 x ∈ [0, π]

and calculate its Fourier series.
Then,

a0 =
1

π

∫ π

−π
f(x)dx =

∫ 0

π
(−1)dx+

∫ π

0
(1)dx = 0

an =
1

π

∫ π

−π
f(x) cos(nx)dx =

∫ 0

π
− cos(nx)dx+

∫ π

0
cos(nx)dx = 0

bn =
1

π

∫ π

−π
f(x) sin(nx)dx =

∫ 0

π
− sin(nx)dx+

∫ π

0
sin(nx)dx

=
1

π

[
cos(nx)

n

]0
−π

+
1

π

[
− cos(nx)

n

]π
0

=
2

nπ
(1− cos(nπ)) =

{
0 n = 2k (even)

4
π(2k−1) n = 2k − 1 (odd)

Therefore, the Fourier series associated to the function f above is equal to

SF (x) =
4

π

∞∑
n=1

1

2n− 1
sin ((2n− 1)x) .

Example 2. Consider the function f(x) = x2 restricted over the interval [−π, π] and calculate
its Fourier series.

Then,

a0 =
1

π

∫ π

−π
x2dx =

2

π

π3

3
=

2π2

3

an =
1

π

∫ π

−π
x2 cos(nx)dx = . . . by parts . . . =

1

π

(
��������
[
x2

sin(nx)

n

]π
−π

+
2

n2
[x cos(nx)]π−π −

���������2

n2

∫ π

−π
cos(nx)dx

)
=

2

n2
· 2π cos(nπ) =

(−1)n4

n2

bn =
1

π

∫ π

−π
x2 sin(nx)dx = 0

Therefore, the Fourier series associated to the function f above is equal to

SF (x) =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx).

Remark 11. Assume that we have the equality f(x) = SF (x) for x ∈ [−π, π] (this is indeed the
case; we will get there shortly), i.e.

x2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nx),
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and evaluate the function at the endpoint x = π:

π2 =
π2

3
+ 4

∞∑
n=1

(−1)n

n2
cos(nπ) =

π2

3
+ 4

∞∑
n=1

(−1)n

n2
(−1)n =

π2

3
+ 4

∞∑
n=1

1

n2

meaning

∞∑
n=1

1

n2
=
π2

6
.

Proposition 12. If a function is odd (i.e. f(−x) = −f(x)), then the coefficients an = 0 for all
n ∈ N ∪ {0}.

If a function is even (i.e. f(−x) = f(x)), then the coefficients bn = 0 for all n ∈ N.

2.1 Fourier series over any interval

In general, Fourier series (with sine and cosine) can be defined over any interval [α, β]. Let us
consider a function f(t) periodic with period 2π over the interval [−π, π], then its Fourier series is
given as before

SF (t) =
a0
2

+

∞∑
n=1

[an cos(nt) + bn sin(nt)]

with

an =
1

π

∫ π

−π
f(t) cos(nt)dt and bn =

1

π

∫ π

−π
f(t) sin(nt)dt.

Let α, β ∈ R (suppose α < β) and define a new variable

x =
β − α

2π
t+

β + α

2
, t ∈ [−π, π]

or viceversa t = π
β−α (2x− β − α) (x ∈ [α, β]). We can then perform a change of variable and

define a new function g : [α, β]→ R as

g(x) = f(t)

∣∣∣∣
t= π

β−α (2x−β−α)
= f

(
π

β − α
(2x− β − α)

)
.

Then, the Fourier transform of g is

SF (x) =
a0
2

+
∞∑
n=1

[
an cos

(
nπ

β − α
(2x− β − α)

)
+ bn sin

(
nπ

β − α
(2x− β − α)

)]
with

an =
2

β − α

∫ β

α
g(x) cos

(
nπ

β − α
(2x− β − α)

)
dx

bn =
2

β − α

∫ β

α
g(x) sin

(
nπ

β − α
(2x− β − α)

)
dx.
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3 Point-wise convergence

Theorem 13 (Point-wise convergence). If f is a periodic function with period P = 2π and
both f and f ′ are piece-wise continuous on [−π, π], then the Fourier series

SF (x) =
a0
2

+
+∞∑
n=1

[an cos(nx) + bn sin(nx)]

is convergent. Moreover, for any x ∈ [−π, π] where the function is continuous, we have the equality

f(x) =
a0
2

+

+∞∑
n=1

[an cos(nx) + bn sin(nx)]

while for the points x ∈ [−π, π] where the function is discontinuous (remember that we only have a
finite number of them and the left- and righ-side limits exist), we have

f(x−) + f(x+)

2
=
a0
2

+
+∞∑
n=1

[an cos(nx) + bn sin(nx)]

Proof. The proof consists of showing that the sequence of partial sums is convergent and indeed it
converges to the value of the function f at the point x (or the average of the left- and right-side
limit). To achieve the result, we will use three Lemmas that will be stated and proved along the
way.

Lemma 14. For all n ∈ N ∪ {0}, we have

an cos(nx) + bn sin(nx) =
1

π

∫ π

−π
f(x+ t) cos(nt)dt

a0 =
1

π

∫ π

−π
f(x− t)dt

Proof. It follows from the definition of the Fourier coefficients plus some smart manipulations:

an cos(nx) + bn sin(nx) =
1

π

∫ π

−π
f(t) [cos(nt) cos(nx) + sin(nt) sin(nx)] dt

=
1

π

∫ π

−π
f(t) cos(n(t− x))dt =

1

π

∫ π−x

−(π−x)
f(s+ x) cos(ns)ds =

1

π

∫ π

−π
f(x+ s) cos(ns)ds

where in the last equality we used the fact that if a function g has period P = 2π, then
∫ α+2π
α g(t)dt =∫ π

−π g(t)dt for any α ∈ R. The same holds for the coefficients a0.

Let’s consider now the sequence of partial sums:

SN (x) =
a0
2

+

N∑
n=1

[an cos(nx) + bn sin(nx)]

=
1

π

∫ π

−π
f(x+ t)

(
1

2
+

N∑
n=1

cos(nt)

)
dt =

1

π

∫ π

−π
f(x+ t)DN (t)dt
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by Lemma 14. We introduced here a new function called Dirichlet’s kernel

DN (x) :=
1

2
+

N∑
n=1

cos(nt)

which has the following property:

Lemma 15.

DN (x) =
sin
(
(N + 1

2)x
)

2 sin
(
x
2

) ∀ x ∈ R.

Furthermore, ∫ π

0
DN (x)dx =

π

2
,

∫ 0

−π
DN (x)dx =

π

2
.

Proof. Indeed, we rewrite the cosine function into its exponential form cos(x) = eix+e−ix

2 (there’s

a similar one for the sine function) and we use a result about geometric sums, namely
∑N

n=0 q
n =

1−qN+1

1−q , provided that q 6= 1. Let’s assume x 6= 0 (i.e. eix 6= 1),

DN (x) =
1

2
+

N∑
n=1

cos(nx) =
1

2

(
1 +

N∑
n=1

einx +

N∑
n=1

e−inx

)
=

1

2

(
1 +

eix − ei(N+1)x

1− eix
+
e−ix − e−i(N+1)x

1− e−ix

)

=
1

2

(
1 +

eix − ei(N+1)x

e
ix
2 (e−

ix
2 − e

ix
2 )

+
e−ix − e−i(N+1)x

e−
ix
2 (e

ix
2 − e−

ix
2 )

)
=

1

2

[
1 +

1

2i sin
(
x
2

) (−e ix2 + ei(N+ 1
2
)x + e−

ix
2 − e−i(N+ 1

2
)x
)]

=
1

2

[
1 +

1

2i sin
(
x
2

) (−2i sin
(x

2

)
+ 2i sin

((
N +

1

2

)
x

))]
=

sin
(
(N + 1

2)x
)

2 sin
(
x
2

) .

This formula is now clearly valid for x = 0: we just need to calculate a limit: limx→0
sin((N+ 1

2
)x)

2 sin(x2 )
=

limx→0
sin((N+ 1

2
)x)

(N+ 1
2
)x

x
2 sin(x2 )

(N+ 1
2
)x

x = N + 1
2 .

The second batch of formulægiven in the Lemma is just a matter of straightforward calculations.

Getting back to the sequence of partial sums and using Lemma 15, we have

SN (x) =
1

π

∫ π

−π
f(x+ t)

sin
(
(N + 1

2)t
)

2 sin
(
t
2

) dt

Now, instead of proving that SN (x)→ f(x+)+f(x−)
2 as N → +∞, we will prove that

1

π

∫ π

0
f(x+ t)

sin
(
(N + 1

2)t
)

2 sin
(
t
2

) dt −→ f(x+)

2

1

π

∫ 0

−π
f(x+ t)

sin
(
(N + 1

2)t
)

2 sin
(
t
2

) dt −→ f(x−)

2
.
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We will focus only on the first limit (the second one follows the same procedure): from Lemma 15
(the second batch of formulæ),

1

π

∫ π

0
f(x+ t)

sin
(
(N + 1

2)t
)

2 sin
(
t
2

) dt− f(x+)

2
=

1

π

∫ π

0

f(x+ t)− f(x+)
2

2 sin
(
t
2

) sin

(
(N +

1

2
)t

)
dt

=
1

π

∫ π

0
gx(t) sin

(
(N +

1

2
)t

)
dt

where

gx(t) :=
f(x+ t)− f(x+)

2

2 sin
(
t
2

) .

By the properties of f , g is piece-wise continuous for all t ∈ (0, π]. Moreover,

lim
t→0+

gx(t) = lim
t→0+

f(x+ t)− f(x+)
2

2 sin
(
t
2

) = lim
t→0+

f(x+ t)− f(x+)
2

t

t

2 sin
(
t
2

) = D+f(x)

(the right-side derivative of f at the point x), meaning that gx(t) is also well-defined in zero and
gx ∈ R([0, π]).

Lemma 16 (Riemann-Lebesgue Lemma). Let f ∈ R([a, b]), then as λ→ +∞

1

π

∫ π

0
f(t) sin (λt) dt→ 0 and

1

π

∫ π

0
f(t) cos (λt) dt→ 0.

Proof. If f(t) = C a constant function, then it is obvious:
∣∣ 1
π

∫ π
0 f(t) sin (λt) dt

∣∣ =

∣∣∣∣Cπ [− cos(λt)
λ

]b
a

∣∣∣∣ ≤
2|C|
πλ → 0.

If f(x) =
∑K

k=1Ck|[xk−1,xk] is piecewise constant (where {xk}K0 is a partition of [a, b]), then the

same principle holds and we have
∣∣ 1
π

∫ π
0 f(t) sin (λt) dt

∣∣ ≤ ∑K
k=1 2|Ck|
πλ → 0.

For a generic function that is Riemann-integrable f ∈ R([a, b]), we know that we can find a
partition P that can approximate the value of the integral arbitrarily well: let ε > 0 and call g(t)
the piecewise constant function that describes the lower sums of f with the partition P , then

0 ≤ 1

π

∫ π

0
f(t)dt− L(f, P ) =

1

π

∫ π

0
f(t)dt− 1

π

∫ b

a
g(t)dt =

1

π

∫ π

0
(f(t)− g(t)) dt < ε

(by construction f(t)− g(t) is a non-negative function).
In conclusion,∣∣∣∣ 1π

∫ π

0
f(t) sin (λt) dt

∣∣∣∣ ≤ ∣∣∣∣ 1π
∫ π

0
(f(t)− g(t)) sin (λt) dt

∣∣∣∣+

∣∣∣∣ 1π
∫ π

0
g(t) sin (λt) dt

∣∣∣∣
≤ 1

π

∫ π

0
|f(t)− g(t)| dt+

K
λ
< ε+

K
λ
→ 0

(we take ε smaller and smaller).
The same arguments hold for the “cos” version.
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Finally, thanks to Lemma 16, as N → +∞ we have

1

π

∫ π

0
f(x+ t)

sin
(
(N + 1

2)t
)

2 sin
(
t
2

) dt− f(x+)

2
=

1

π

∫ π

0
gx(t) sin

(
(N +

1

2
)t

)
dt→ 0.

The same holds for the convergence to f(x−)
2 .

4 The Gibb’s phenomenon

We start with the remark that a function f has a jump discontinuity of amplitude b at the point
x = c if

lim
ε→0; ε>0

|f(c− ε)− f(c+ ε)| = b

Viceversa, f is continuous at x = c if the limit above equals zero.
We will see that if a periodic function f is discontinuous, then its Fourier series behaves in a

strange way.
The behaviour is called Gibbs’ phenonemon and it says that the truncated Fourier series

(i.e. the Fourier trigonometric polynomial)

TN (x) =
a0
2

+
N∑
n=1

[an cos(nx) + bn sin(nx)]

near a jump discontinuity exceeds the jump by about 9% of the size of the jump, no matter how
big the order N of the polynomial is. This means that the entire Fourier series doesn’t match
the function very well in a neighbourhood of the discontinuity (not only at the discontinuity point

itself, where we know that the value of the Fourier series is equal to f(x−)+f(x+)
2 , thanks to the

theorem above).
To study this phenomenon we will consider one simple example. Consider the “square wave”

function that we saw in Example 1:

f : [−π, π]→ R

f(x) =

{
−1 x ∈ [−π, 0)

1 x ∈ [0, π]

periodically extended over the whole real line.
Since the jump discontinuity at x = 0 is equal to b = 1 + (−1) = 2, we will see that the peak

value of the Fourier series is about 0.18 (i.e. 9% of the value 2) higher than the maximum value of
the function f at the discontinuity point x = 0.

We already know its Fourier series:

SF (x) =
4

π

∞∑
n=1

sin ((2n− 1)x)

2n− 1
;

and its truncated Fourier series (i.e. the Fourier trigonometric polynomial of degree N):

TN (x) =
4

π

N∑
n=1

sin ((2n− 1)x)

2n− 1
=

4

π

(
sin(x) +

sin(3x)

3
+ . . .+

sin ((2N − 1)x)

2N − 1

)
.
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Proposition 17. For all x ∈ R

[TN (x)]′ =
2

π

sin(2Nx)

sin(x)
.

Proof. We first take the derivative of the truncated Fourier series from the formula above

[TN (x)]′ =
4

π
(cos(x) + cos(3x) + . . .+ cos ((2N − 1)x))

and we use the equivalent expressions for sine and cosine functions (cos(x) = eix+e−ix

2 and sin(x) =
eix−e−ix

2i ) to get

[TN (x)]′ =
4

π

(
eix + e−ix

2
+
e3ix + e−3ix

2
+ . . .

e(2N−3)ix + e−(2N−3)ix

2
+
e(2N−1)ix + e−(2N−1)ix

2

)

=
2

π
e−(2N−1)ix

(
1 + e2ix + e4ix + . . .+ e(4N−4)ix + e(4N−2)ix

)
=

2

π
e−(2N−1)ix

4N−2∑
n=0

(
e2ix

)n
this is a geometric sum with general term q = e2ix (and |q| = |e2ix| < 1), therefore its sum is equal
to

=
2

π
e−(2N−1)ix

1− e(4N−2)ix

1− e2ix
=

1

π

e−(2N−1)ix − e(2N−1)ix

ieix (e−ix−eix)
2i

=
1

π

2eix e
−2Nix−e2Nix

2i

eix(− sin(x))

=
2

π

sin(2Nx)

sin(x)

In order to find the maximum value(s) of the function TN (x) we study the zeroes of the derivative
and we can clearly see that the first zero of the derivative is for x = π

2N . Since TN (0) = 0 and the
terms in the sum for TN ( π

2N ) are all positive, we can conclude that x = π
2N is a maximum (it’s

actually a global maximum).
We know that f( π

2N ) = 1 (since x = π
2N ∈ [0, π]) and we want to calculate (or better, to

estimate) what is the value of the trigonometric polynomial TN (x) at the point x = π
2N .

Remember that TN (x) should approximate the “square-wave” function f(x) and eventually
should be equal to f(x) when N → +∞ (i.e. when we get the full Fourier series and not just a
truncation of it).

TN

( π

2N

)
=

4

π

sin
( π

2N

)
+

sin
(
3π
2N

)
3

+ . . .+
sin
(
(2N−1)π

2N

)
2N − 1


=

4

π

π

2N

sin
(
π
2N

)
π
2N

+
sin
(
3π
2N

)
3π
2N

+ . . .+
sin
(
(2N−1)π

2N

)
(2N−1)π

2N

 =
2

π

N∑
j=0

g (xmid, j) ∆x

the last expression is the Riemann sum using the midpoints of the partition P = {x0 = 0, x1 =
π
N , x2 = 2π

N , . . . , xN−1 = (N−1)π
N , xN = π} and ∆x = xj − xj−1 = π

N for the function g(x) = sin(x)
x .
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The functions is Riemann integrable g ∈ R([0, π]) and therefore, as N ↗ +∞ (meaning, when
the partition gets finer and finer) we have

lim
N→+∞

TN

( π

2N

)
= lim

N→+∞

2

π

N∑
j=0

g (xmid, j) ∆x =
2

π

∫ π

0

sin(x)

x
dx

All that?s left is to estimate is the value of the integral. For this we integrate the power series
for g(x) = sin(x)

x . We have that for all x ∈ R

sin(x)

x
= 1− x2

3!
+
x4

5!
− x6

7!
+ . . . =

∞∑
n=0

(−1)n

(2n+ 1)!
x2n,

which gives

2

π

∫ π

0

sin(x)

x
dx =

2

π

∫ π

0

∞∑
n=0

(−1)n

(2n+ 1)!
x2ndx =

2

π

∞∑
n=0

(−1)n

(2n+ 1)!

∫ π

0
x2ndx =

2

π

∞∑
n=0

(−1)n

(2n+ 1)!

[
x2n+1

2n+ 1

]π
0

= 2

(
1− π3

3 · 3!
+

π4

5 · 5!
− π6

7 · 7!
+ . . .

)
≈ 1.18

This series converges very rapidly and after five terms we have the value 1.18 correct to two decimal
places.

We have seen that as N gets large the maximum value of TN (x) at x = π
2N (and π

N → 0)
becomes 1.18, which is 9% bigger than the value of the jump of f(x) at the same point in the limit
x = 0.
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Figure 1: Fourier series approximation to the square wave function. The number of terms in the
truncated Fourier sum is indicated in each plot, and the square wave is shown as a dashed line over
two periods.

13


	Introduction and motivations
	Fourier Series
	Fourier series over any interval

	Point-wise convergence
	The Gibb's phenomenon

