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ABSTRACT

Riemann-Hilbert Approach to Gap Probabilities of Determinantal Point Pro-

cesses

Manuela Girotti, Ph.D.

Concordia University, 2014

In this work, we study problems related to gap probabilities of certain universal deter-

minantal point processes. The study of gap probabilities can be addressed in two directions:

derivation of a Lax formulation of PDEs, as in the first two works presented here, and study

of asymptotic behaviour, as in the last work. In order to achieve such results, the powerful

theory of Riemann-Hilbert problem will be widely implemented.

We first consider the gap probability for the Bessel process in the single-time and multi-

time case. We prove that the scalar and matrix Fredholm determinants of such process

can be expressed in terms of determinants of integrable kernels in the sense of Its-Izergin-

Korepin-Slavnov and thus related to suitable Riemann-Hilbert problems. In the single-time

case, we construct a Lax pair formalism and we derive a Painlevé III equation related to the

Fredholm determinant.

Next, we consider the problem of the gap probabilities for the Generalized Bessel pro-

cess in the single-time and multi-time case, a determinantal process which arises as critical

limiting kernel in the study of self-avoiding squared Bessel paths. As in the Bessel case, we

connect the gap probability to a Riemann-Hilbert problem (derived from an IIKS kernel)

on one side and to the isomonodromic τ -function on the other side. In particular, in the

single-time case we construct a Lax pair formalism and in the multi-time case we explicitly

define a completely new multi-time kernel and we proceed with the study of gap probabilities

as in the single-time case.

Finally, we investigate the gap probabilities of the single-time Tacnode process. Through

steepest descent analysis of a suitable Riemann-Hilbert problem, we show that under appro-

priate scaling regimes the gap probability of the Tacnode process degenerates into a product

of two independent gap probabilities of the Airy process.

iii



ACKNOWLEDGEMENTS

Οὐδεμία ἡμέρα ἄνευ γραφῆς.

Not a day without a line.

(Apelles of Kos)

At the beginning it was a chant. Before all of this happened, before I packed and

shipped my life 6,500 kilometres away from my home country, I was only a student, singing

in a Gregorian Choir, with a white tunic.

Serendipity caught me on a Fall Sunday afternoon. “Manuela, come. I want to introduce

you to Giorgio Pederzoli, professor in Mathematics.” Prof. Pederzoli was very happy to

meet me and, because of our common interests, singing and Mathematics, we soon felt deep

sympathy for each other.

“Why don’t we have a chat some time?”

I went to visit him in his office at Cattolica University several times. We discussed about

a wide range of topics from Mathematics, to Opera music. One day he asked me about my

post-graduation plans and, hearing that doing Mathematical research might have been one

of the options, he shared with me many precious advices and thoughts that he had developed

during his long academic career.

A few days before Christmas, I received a handwritten letter from Prof. Pederzoli. He
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Chapter 1

Introduction

The work presented in this thesis springs from a specific class of stochastic processes, called

Determinantal Point Processes, which arises in many mathematical and physical contexts.

Nevertheless, the probabilistic setting is just the starting point for a study that involves tools

from many other fields of Mathematics, like Analysis and Complex Geometry.

Many models in Mathematical Physics rely on the notion of Determinantal random Point

Processes. A few examples are offered by the statistical distribution of the eigenvalues

of random matrix models pioneered by Dyson ([31]), certain models of random growth of

crystals ([7], [34], [59]), and mutually avoiding random walkers, usually referred as Dyson’s

processes.

To give an intuitive idea of what a Determinantal Point Process is, we can consider the

following toy-model. Consider a given number n of points (or particles) on the real line R,

moving in a “chaotic” and random way, say as a Brownian motion, maintaining nevertheless

their mutual order (see Figure 1.1).

We introduce now a probability measure on the space of configurations, in other words

a function (called probability density)

ρk(x1, . . . , xk) ∀ k = 1, . . . , n (1.0.1)

that evaluates which scenario is the most probable and which one is the least probable for

a subset of k points (k = 1, . . . , n). Moreover, assume that the initial configuration of the

points as well as the final configuration, after a certain time T , are known (see Figure 1.2).

A fundamental theorem due to S. Karlin and J. McGregor states that such probabil-

ity density has a very specific shape as the determinant of a suitable function K, called

correlation kernel.

Theorem 1.1 (Karlin-McGregor, 1959; [68]). The probability density of the physical system
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x_1 x_nx_2 x_3 ...

Figure 1.1: Visual realization of the toy-model for a determinantal point process.

under consideration is equal to

ρk(x1, . . . , xk) = det [K(xi, xj)]
k
i,j=1 ∀k = 1, . . . , n (1.0.2)

where K(x, y) is a function of two variables which can be built out of the law regulating the

particles’ motion.

From this result it is clear why such system of points was called “determinantal” in the

literature. This toy-model is just an example of a very general notion that will be detailed

in the following Chapter 2 of this thesis.

From Theorem 1.1 it follows that every information about the system of points is con-

tained in the function K and all the quantities of interest, in particular how much a given

configuration is likely to happen or not, can be expressed in terms of K. Our focus, in

particular, will be on the so called “gap probability”, i.e. the probability that there are no

points or particles in a prescribed region of the space, e.g. an interval on the real line R

in our model above. The reason for considering this type of probability is because it is a

natural first step to study a particle system. Moreover, as it will be clear in the next Chapter

(Chapter 2), all the other quantities can be derived from the so called “generating function”,

of which the gap probability is a particular value.

We point out that the same considerations hold true whenever we consider an infinite

number of particles, which means that we can also consider a limit physical system where

the number of particles n tends to infinity. In this case, the discrete system becomes a

continuum. The precise description of this limiting procedure is explained in Section 2.1.2

of the coming chapter.

The original motivation for studying this particular class of point processes dates back

to the Fifties and it is due to the physicist E.P. Wigner.

In the field of Nuclear Physics, Wigner wished to describe the general properties of the

2



Figure 1.2: Visual realization of the toy-model for a determinantal point process. The points
{ak}k=1,...,N are the starting points and {bk}k=1,...,N are the ending points after a given time
T . A quantity of interest may be the probability that each particle xi belongs to a given
interval Ei, for all i’s.

energy levels of highly excited states of heavy nuclei, as measured in nuclear reactions ([109]).

In particular, he wanted to study the spacings between those energy levels. Such a complex

nuclear system is usually represented by a Hermitian operator H, called the Hamiltonian,

defined on an infinite-dimensional Hilbert space and governed by physical laws. However,

except for very specific and simple cases, H is unknown or very hard to compute. On the

other hand, the real quantities of interest are the eigenvalues of H, which represent the

energy levels, defined by the so called Schrödinger equation

Hv = λv (1.0.3)

where v is the eigenfunction associated to the eigenvalue λ.

Wigner argued that one should regard a specific Hamiltonian H as behaving like a large-

dimension random matrix (i.e. a matrix with random entries). Such matrix is thought as a

member of a large class of Hamiltonians, all of which would have similar general properties

as the specific Hamiltonian H in question ([108]). As a consequence, the eigenvalues of H
could then be approximated by the eigenvalues of a large random matrix and the spacings

between energy levels of heavy nuclei could be modelled by the spacings between successive

eigenvalues of a random n× n-matrix as n→ +∞.

The ensemble of the random eigenvalues is precisely a Determinantal Point Process.

Therefore, studying the spacings or gaps between eigenvalues means studying the gap prob-

3



abilities of the determinantal system. Furthermore, the distribution of the largest eigenvalue

obeys a different law on its own and is governed by the so called “Tracy-Widom” distribu-

tion ([100]), which can still be considered as a gap probability on an interval of the type

[a,+∞], a ∈ R (the eigenvalues, or in general the points of a Determinantal Process, are

always confined in finite positions on the real line).

This was the starting point of a powerful theory in Mathematical Physics called Random

Matrix Theory, which was developed since the 1960s by Wigner and his colleagues, including

F. Dyson and M. L. Mehta, and many other mathematicians (see [85]).

The theory of Determinantal Point Processes has not only applications in Physics, but

also in many other areas. As an example, we can cite a diffusion process called Squared

Bessel Process (BESQ), which will be analyzed in Chapter 6. A set of non-intersecting

particles undergoing diffusion according to BESQ describe a determinantal point process.

The BESQ is the underlying structure for the Cox-Ingersoll-Ross (CIR) model in Finance,

which describes the short term evolution of interest rates, and for many models of the Growth

Optimal Portfolio (GOP; [44], [91]). Moreover, a collection of non-intersecting BESQ play a

very important role in the so called “principal components analysis” (PCA) of multivariate

data, a technique that is used in detecting hidden patterns in data and image processing

([110], [42], [92]).

The purpose of the present thesis is to establish a connection between certain gap prob-

abilities and a particular class of boundary value problems in the complex plane, generally

referred to as “Riemann-Hilbert problems” (see e.g. [18]), or Wiener-Hopf method in older

literature.

This is the first basic step that we will perform in all our works. Indeed, reformulating the

study of gap probabilities as a suitable boundary value problem allows an effective analysis

of such quantities. In particular, we can perform either a quantitative or a qualitative study.

Starting from the Riemann-Hilbert problem, it will be possible to derive a system of

differential equations whose solution describes the behaviour of the gap probabilities as the

gaps themselves vary. More specifically, it will be possible to express the gap probabilities

in terms of the theory of equation of Painlevé type; this relationship is quite well-known

originally in two dimensional statistical physics ([83]) and it was extensively studied in the

Eighties and Nineties ([53], [54], [57], [94], [100], [101]).

In order to frame our results in a narrower context, we recall the Tracy-Widom distribu-

tion ([100]), which, as we wrote earlier, expresses the fluctuations of the largest eigenvalue

of a random matrix with Gaussian entries; such distribution is defined in terms of the so-

lution of a specific nonlinear ODE, the Painlevé II equation. Similarly in [101] the authors

connected the fluctuation of the smallest eigenvalue of another set of random matrices called
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“Laguerre ensemble” to the third member of the Painlevé hierarchy. Our results are closely

related to these and they will extend this connection to two cases: the “Bessel process”

(Chapter 5) and the “Generalized Bessel process”(Chapter 6).

We will first consider the gap probability for the Bessel process in the single-time and

multi-time case. The multi-time Bessel process is simply a multi-dimensional version of

the “single-time” process where we introduced a new parameter representing the time (see

Section 2.2 of the following chapter). We will prove that the scalar and matrix Fredholm

determinants of such process, which coincide with the respective gap probabilities, can be

expressed in terms of Fredholm determinants of integrable operators in the sense of Its-

Izergin-Korepin-Slavnov (IIKS). Such types of operator are related to a Riemann-Hilbert

problem in a natural way. In the single-time case, we will construct a Lax pair formalism

from the given Riemann-Hilbert problem and we will derive a Painlevé III equation related

to the Fredholm determinant. Similar calculations are performed for the Generalized Bessel

process.

On the other hand, the presence of a Riemann-Hilbert problem may allow also a qual-

itative study of gap probabilities in certain critic regimes using the method of (non-linear)

Steepest Descent (see Chapter 4). The focus in this case is not to give an exact form to the

gap probabilities, but rather to study their asymptotic behaviour in the limit as a given pa-

rameter converges to a critical value. A straightforward example is the asymptotic behaviour

of the Pearcey process ([2], [11], [12]): in the setting of a large finite gap, the Pearcey gap

probability factorizes into a product of two gap probabilities of the Airy process for semi-

infinite gaps. Along the same lines as [11], our work will investigate the limiting behaviour of

the gap probabilities of the tacnode process (Chapter 7). We will firstly show that the Fred-

holm determinant of this process can be described by the Fredholm determinant of an IIKS

integrable operator, as in the Bessel and Generalized Bessel case, and through the steepest

descent analysis of the associated Riemann-Hilbert problem, we wil show that under appro-

priate scalings the gap probability of the tacnode process degenerates into a product of two

independent gap probabilities of the Airy process.

The present thesis is organized as follows. For the sake of completeness and self-containedness,

in the first coming Chapters 2, 3 and 4 we will review all the crucial results that will be

used in order to achieve our study of gap probabilities. In particular, we will formally define

a determinantal point process and describe its properties in Chapter 2, while in Chapter 3

we will explain the connection between a specific class of integral operators (to which the

Bessel, Generalized Bessel and tacnode process belong) and the well-known Jimbo-Miwa-

Ueno τ -function via a suitably constructed Riemann-Hilbert problem. In Chapter 4 we will

recall the powerful technique of Steepest Descent, first introduced by Deift and Zhou ([24]),

5



for the study of asymptotic behaviour of a given Riemann-Hilbert problem, that will in turn

allows to draw meaningful conclusions on the asymptotic behaviour of the gap probabilities

we started with.

The new and original results which represent the core of this thesis are exposed in Chapter

5 for the Bessel process, Chapter 6 for the Generalized Bessel process and Chapter 7 for the

tacnode process. Conclusions and important remarks are discussed at the end of every

Chapter and collected in the conclusive Chapter 8. In the appendix A, we briefly describe

some numerical methods that have been used to obtain some of the figures appearing along

the thesis.

6



Chapter 2

Determinantal Point Processes

In the present chapter we will review the main concepts about Determinantal Point Processes

in timeless and dynamic regimes.

Determinantal point processes are of considerable current interest in Probability theory

and Mathematical Physics. They were first introduced by Macchi ([82]) and they arise natu-

rally in Random Matrix theory, non-intersecting paths, certain combinatorial and stochastic

growth models and representation theory of large groups, see e.g. Deift [18], Johansson

[58], Katori and Tanemura [71], Borodin and Olshanski [16], and many other papers cited

therein. For surveys on determinantal processes, we refer to the papers by Hough et al. [48],

Johansson [61], König [73] and Soshnikov [96].

2.1 Point Processes

Consider a random collection of points on the real line. A configuration X is a subset of R

that locally contains a finite number of points, i.e. #(X ∩ [a, b]) < +∞ for every bounded

interval [a, b] ⊂ R.

Definition 2.1. A (locally finite) point process on R is a probability measure on the space

of all configurations of points {X}.

Loosely speaking, given a point process on R, it is possible to evaluate the probability

of any given configuration. Moreover, the mapping A 	→ E[#(X ∩ A)], which assigns to a

Borel set A the expected value of the number of points in A under the configuration X , is a

measure on R.

Let us assume there exists a density ρ1 with respect to the Lebesgue measure and we call

7



it 1-point correlation function for the point process. Then, we have

E[#(X ∩ A)] =

∫
A

ρ1(x)dx. (2.1.1)

and ρ1(x)dx represents the probability to have a point in the infinitesimal interval [x, x+dx].

In general, a k-point correlation function ρk (if it exists) is a function of k variables such

that for distinct points

ρk(x1, . . . , xk)dx1 . . . dxk (2.1.2)

is the probability to have a point in each infinitesimal interval [xj, xj + dxj], j = 1, . . . , k.

Thus, given disjoints sets A1, . . . , Ak, we have

E

[
k∏

j=1

#(X ∩ Aj)

]
=

∫
A1

. . .

∫
Ak

ρk(x1, . . . , xk)dx1 . . . dxk (2.1.3)

i.e. the expected number of k-tuples (x1, . . . , xk) ∈ X k such that xj ∈ Aj for every j. In

case the Aj’s are not disjoint it is still possible to define the quantity above, with little

modifications. For example, if Aj = A for every j, then

1

k!

∫
A

. . .

∫
A

ρk(x1, . . . , xk)dx1 . . . dxk (2.1.4)

is the expected number of ordered k-tuples (x1, . . . , xk) such that x1 < x2 < . . . < xk and

xj ∈ A for every j = 1, . . . , k.

If P (x1, . . . , xn) is a probability density function on R
n, invariant under permutations of

coordinates, then we can build an n-point process on R with correlation functions

ρk(x1, . . . , xk) :=
n!

(n− k)!

∫
Rn−k

P (x1, . . . , xn)dxk+1 . . . dxn. (2.1.5)

The problem of existence and uniqueness of a random point field defined by its correlation

functions was studied by Lenard in [80] and [81].

Definition 2.2. A point process with correlation functions ρk is determinantal if there

exists a kernel K(x, y) such that for every k and every x1, . . . , xk we have

ρk(x1, . . . , xk) = det[K(xi, xj)]
k
i,j=1. (2.1.6)

The kernel K is called correlation kernel of the determinantal point process.

Remark 2.3. The correlation kernel is not unique. If K is a correlation kernel, then

8



the conjugation of K with any positive function h(·) gives an equivalent correlation kernel

K̃(x, y) := h(x)K(x, y)h(y)−1 describing the same point process.

Determinantal processes became quite common as a model describing (random) points

that tend to exclude one another. Indeed, it is possible to show that in a determinantal

process there is a repulsion between nearby points and this is the reason why in physics

literature a determinantal point process is sometimes called a Fermionic point process (see

e.g [82], [32], [97]).

Examples of determinantal processes can be constructed thanks to the following result.

We refer to [96] for a thorough exposition.

Theorem 2.4. Consider a kernel K with the following properties:

• trace-class: TrK =
∫
R
K(x, x)dx = n < +∞;

• positivity: det[K(xi, xj)]
n
i,j=1 is non-negative for every x1, . . . , xn ∈ R;

• reproducing property: ∀ x, y ∈ R

K(x, y) =

∫
R

K(x, s)K(s, y)ds. (2.1.7)

Then,

P (x1, . . . , xn) :=
1

n!
det[K(xi, xj)]

n
i,j=1 (2.1.8)

is a probability measure on R
n, invariant under coordinates permutations. The associated

point process is a determinantal point process with K as correlation kernel.

In a determinantal process all information is contained in the correlation kernel and all

quantities of interest can be expressed in terms of K. In particular, given a Borel set A, we

are interested in the so called gap probability, i.e. the probability to find no points in A.

Consider a point process on R with correlation function ρk and let A be a Borel set such

that, with probability 1, there are only finitely may points in A (for example, A is bounded).

Denote by pA(n) the probability that there are exactly n points in A. If there are n points in

A, then the number of ordered k-tuples in A is
(
n
k

)
. Therefore, the following equality holds

1

k!

∫
Ak

ρk(x1, . . . , xk)dx1 . . . dxk =
∞∑
n=k

(
n

k

)
pA(n). (2.1.9)

9



Assume the following alternating series is absolutely convergent, then

∞∑
k=0

(−1)k
k!

∫
Ak

ρk(x1, . . . , xk)dx1 . . . dxk =
∞∑
k=0

∞∑
n=k

(−1)k
(
n

k

)
pA(n)

=
∞∑
n=0

(
n∑

k=0

(−1)k
(
n

k

))
pA(n); (2.1.10)

on the other hand,
∑∞

k=0(−1)k
(
n
k

)
vanishes unless n is zero. In conclusion,

pA(0) =
∞∑
k=0

(−1)k
k!

∫
Ak

ρk(x1, . . . , xk)dx1 . . . dxk, (2.1.11)

where we call pA(0) gap probability, i.e. the probability to find no points in A. In

particular, when a point process is determinantal, we have

pA(0) =
∞∑
k=0

(−1)k
k!

∫
Ak

det [K(xi, xj)]
k
i,j=1 dx1 . . . dxk, (2.1.12)

which is clearly the Fredholm determinant

det

(
Id−K

∣∣∣∣
A

)
(2.1.13)

of the (trace class) integral operator K defined by

K(φ)(x) =

∫
R

K(x, y)φ(y)dy (2.1.14)

and restricted to the Borel set A.

It is actually possible to prove a more general result, which reduces to the one above

when considering zero particles.

Theorem 2.5 (Theorem 2, [96]). Consider a determinantal point process with kernel K.

For any finite Borel sets Bj ⊆ R, j = 1, . . . , n, the generating function of the probability

distribution of the occupation number #Bj
:= #{xi ∈ Bj} is given by

E

(
n∏

i=1

z
#Bj

j

)
= det

(
Id−

n∑
j=1

(1− zj)K

∣∣∣∣
Bj

)
. (2.1.15)

In particular, the probability of finding any number of points kj in the correspondent set

Bj ∀j is given by a suitable derivative of the generating function at the origin. We refer
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again to [96] for a detailed proof of the Theorem.

2.1.1 Examples of Determinantal Point Processes

In this section, we will briefly review some of the main examples of Determinantal point

processes, which also provide a physical motivation for the study of such type of processes.

For more details, we cite standard references as [32] and [97] for the Fermi gas model and

[18] and [85] for the Random Matrix models.

Fermi gas. Consider the Schrödinger operator H = − d2

dx2 + V (x) with V a real-valued

function, acting on the space L2(E), E is a separable Hausdorff space (for the sake of

simplicity, E will be R or S1), and let {ϕk}∞k=0 be a set of orthonormal eigenfunctions for

the operator H. The nth exterior power of H is an operator
∧n H :=

∑n
i=1

[
− d2

dx2
i
+ V (xi)

]
acting on

∧n L2(E) (the space of antisymmetric L2-functions of n variables) and it describes

the Fermi gas with n particle, i.e. an ensemble of n fermions.

The ground state of the Fermi gas is given by the so called Slater determinant

ψ(x1, . . . , xn) =
1√
n!

∑
σ∈Sn

(−1)σ
n∏

i=1

ϕi−1(xσ(i))

=
1√
n!

det [ϕi−1(xj)]
n
i,j=1 . (2.1.16)

It is known that the absolute value squared of the ground state defines the probability

distribution of the particles. Therfore, we have

pn(x1, . . . , xn) = |ψ(x1, . . . , xn)|2 = 1

n!
det [Kn(xi, xj)]

n
i,j=1 (2.1.17)

Kn(x, y) :=
n−1∑
i=0

ϕi−1(x)ϕi−1(y) (2.1.18)

and Kn(x, y) is the kernel of the orthogonal projection onto the subspace spanned by the

first n eigenfunctions {ϕj} of H.

The formula above defines a determinantal process. Indeed, it can be shown (see [85])

that the correlation function are

ρ
(n)
k (x1, . . . , xk) =

n!

(n− k)!

∫
pn(x1, . . . , xn)dxk+1 . . . dxn = det [Kn(xi, xj)]

k
i,j=1 . (2.1.19)

To give some practical examples, let’s focus on two special cases of H. The first case is

11



the harmonic oscillator on the real line R

H = − d2

dx2
+ x2; (2.1.20)

its eigenfunctions are the Weber-Hermite functions

ϕk(x) =
(−1)k
π

1
4

(2kk)
1
2 e

x2

2
dk

dxk
e−x

2

(2.1.21)

and the correlation kernel is (using the Christoffel-Darboux formula)

Kn(x, y) =
(n
2

) 1
2 ϕn(x)ϕn−1(y)− ϕn(y)ϕn−1(x)

x− y
. (2.1.22)

The second case is the free particle on a circle S1

H = − d2

dθ2
(2.1.23)

and its correlation kernel is

Kn(θ, η) =
sin

(
n
2
(θ − η)

)
2π sin

(
θ−η
2

) . (2.1.24)

The two examples above can also be interpreted as the equilibrium distribution of n

unit charges confined to the line R or to the unit circle S1 respectively, repelling each other

according to the Coulomb law of two-dimensional electrostatic.

Random Matrix Ensembles. The probability distribution in the previous example al-

lows another interpretation.

Consider the space of n× n complex Hermitian matrices

Hn = {M ∈ Matn(C) |M = M † } . (2.1.25)

This is a n2-dimensional vector space with the real diagonal entries {Mii}ni=1 and the real and

imaginary part of the upper diagonal elements {�Mij, Mij}i<j as independent coordinates.

The flat Lebesgue measure on Hn is

dM =
n∏

i=1

dMii

n−1∏
i=1

n∏
j=i+1

d�MijdMij. (2.1.26)
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Definition 2.6. The Gaussian Unitary Ensemble (GUE) is the probability measure

pn(M) =
1

Zn

e−TrM2

dM (2.1.27)

on the space Hn.

The above definition is equivalent to the requirement that all the entries {�Mij, Mij}i<j

and {Mii} are mutually independent random variables; more precisely, �Mij, Mij and Mii

are normal random variable with zero mean and variance equal to 1
4
, 1

4
, 1

2
respectively:

�Mij, Mij ∼ N
(
0, 1

4

)
and Mii ∼ N

(
0, 1

2

)
.

Definition 2.7. A Unitary Ensemble is the probability measure

pn(M) =
1

Zn

e−TrV (M)dM (2.1.28)

on the space Hn, where V : R → R is a given function, called the potential, with suitable

growth condition at ±∞ to guarantee that the probability measure above is well defined.

Remark 2.8. A sufficient condition for the probability (2.1.28) to be well-defined is that V (x)

grows faster than ln(1 + x2), for |x| � 1, which is certainly satisfied if V is a polynomial of

even degree, with positive leading coefficient.

In general, the entries of a Unitary Ensembles are not independent, but strongly corre-

lated. The name “Unitary Ensemble” comes from the fact that the probability distribution

(2.1.28) is invariant under conjugation with a unitary matrix M 	→ UMU−1, U ∈ U(n).

In random matrix theory, one is interested in the distribution of the eigenvalues of the

(random) matrix M . For the case of GUE, the eigenvalues are real random variables.

According to the spectral theorem, any Hermitian matrix M can be written as M =

UΛU−1, where Λ = diag{λ1, . . . , λn} is the matrix of eigenvalues and U ∈ U(n). Therefore,

we can perform the following change of variables

M 	→ (Λ, U)

{Mii, i = 1, . . . , n; �Mij,Mij, i < j} 	→ {λ1, . . . , λn; uij} , (2.1.29)

where uij are the parameters that parametrize the unitary group. Under such transformation,

the Lebesgue measure reads (thanks to the Weyl integration formula)

dM = cn
∏
i<j

(λi − λj)
2dλ1 . . . dλndU (2.1.30)
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where cn is a suitable normalization constant and dU is the Haar measure on U(n).

Since TrV (M) =
∑

j V (λj), we can conclude that the probability measure on the space

of matrices (2.1.28) induces a joint probability density on the eigenvalues given by

1

Z̃n

∏
i<j

(λi − λj)
2

n∏
j=1

e−V (λj) =
1

n!
det [Kn(xi, xj)]

n
i,j=1 (2.1.31)

with Z̃n a normalization constant and

Kn(x, y) = e−
V (x)+V (y)

2

n−1∑
j=0

φj(x)φj(y) (2.1.32)

{φj} being the set of orthonormal polynomials with respect to exp
{
−V (·)

2

}
.

In particular, in the GUE case (V (x) = x2), the polynomials φj are the Hermite poly-

nomials and the kernel Kn is the Hermite kernel already described in the previous example

(2.1.22).

Non-intersecting path ensemble. Let pt(x; y) be the transition probability density from

point x to point y at time t of a one-dimensional strong Markov process with continuous

sample paths. A classical theorem by S. Karlin and J. McGregor [68] gives a determinantal

formula for the probability that a number of paths with given starting and ending positions

fall in certain sets at some later time without intersecting in the intermediate time interval

(see Figure 1.2).

Theorem 2.9 ([68]). Consider n independent copies X1(t), . . . , Xn(t) of a one-dimensional

strong Markov process with continuous sample paths, conditioned so that

Xj(0) = aj (2.1.33)

for given values a1 < a2 < . . . < an ∈ R. Let pt(x, y) be the transition probability function of

the Markov process and let E1, . . . , En ⊆ R be disjoint Borel sets (more precisely, we assume

supEj < inf Ej+1). Then,

1

Zn

∫
E1

. . .

∫
En

det [pt(ai, xj)]
n
i,j=1 dx1 . . . dxn (2.1.34)

is equal to the probability that each path Xj belongs to the set Ej at time t, without any

intersection between paths in the time interval [0, t], for some normalizing constant Zn.
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Sketch of the proof (a heuristic argument). Let n = 2, then

1

Z2

∫
E1

∫
E2

pt(a1, x1)pt(a2, x2)− pt(a1, x2)pt(a2, x1) dx1dx2

= P (X1(t) ∈ E1)P (X2(t) ∈ E2)− P (X1(t) ∈ E2)P (X2(t) ∈ E1)

=: P (A)− P (B) . (2.1.35)

On the other hand,

P (A)− P (B) = P (A1) + P (A2)− P (B1)− P (B2) (2.1.36)

where Ai, Bi represent the following events:

A1 = {Xi(t) ∈ Ei respectively and the paths did not intersect }
A2 = {Xi(t) ∈ Ei respectively and the paths did intersect at least once }
B1 = {X1(t) ∈ E2, X2(t) ∈ E1 and the paths did not intersect }
B2 = {X1(t) ∈ E2, X2(t) ∈ E1 and the paths did intersect at least once }

Clearly P (B1) = 0. Moreover, consider the event A2: at the first time when the two path

collide, we can interchange the labels. This is a bijection Ψ : A2
∼−→ B2. Since the process is

Markovian and the two particles act independently, we have

P (A2) = P (B2) . (2.1.37)

In conclusion,
1

Z2

∫
E1

∫
E2

det [pt(ai, xj)]i,j=1,2 dx1dx2 = P (A1) . (2.1.38)

However, this is not a determinantal process, since the correlation functions are not

expressible in terms of the determinant of a kernel. If we additionally condition the paths to

end at time T > 0 at some given points b1 < . . . < bn, without any intersection between the

paths along the whole time interval [0, T ], then it can be shown (using an argument again

based on the Markov property) that the random positions of the n paths at a given time

t ∈ [0, T ] have the joint probabilty density function

1

Zn

det [pt(ai, xj)]
n
i,j=1 det [pT−t(xi, bj)]

n
i,j=1 =

1

Zn

det [Kn(xi, xj)]
n
i,j=1 (2.1.39)

15



Figure 2.1: Numerical simulation of 50 non-intersecting Brownian paths in the confluent
case with one starting and one ending point.

with a suitable normalizing constant Zn and kernel

Kn(x, y) :=
n∑

j=1

φj(x)ψj(y) (2.1.40)

φj ∈ span{pt(a1, x), . . . , pt(an, x)} (2.1.41)

ψk ∈ span{pT−t(x, b1), . . . , pT−t(x, bn)} (2.1.42)∫
R

φj(x)ψk(x)dx = δjk. (2.1.43)

Remark 2.10. The model we just constructed is known in the literature as biorthogonal

ensemble. We refer to [15] for a thorough exposition on the subject.

Of interest is also the confluent case when two or more starting (or ending) points collapse

together. For example, in the confluent limit as aj → a and bj → b, for all j’s (see Figure

2.1), applying l’Hôpital rule to (2.1.39) gives

1

Z̃n

det

[
di−1

dai−1
pt(a, xj)

]n
i,j=1

det

[
dj−1

dxj−1pT−t(xi, b)

]n
i,j=1

(2.1.44)

which is still a determinantal point process with kernel derived along the same method as

in (2.1.40)-(2.1.43).
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2.1.2 Limit of Determinantal processes and universality.

Suppose that for each n we can construct a (finite) determinantal point process Pn with

correlation kernel Kn. If the sequence of kernels {Kn} converge in some sense to a limit

kernel K as n→∞, one can expect that also the point processes Pn will converge to a new

determinantal point process P with correlation kernel K.

This is indeed the case provided some mild assumptions.

Proposition 2.11. Let P and Pn be determinantal point processes with kernels K and Kn

respectively. Let Kn converge pointwise to K

lim
n→∞

Kn(x, y) = K(x, y) (2.1.45)

uniformly in x, y over compact subsets of R. Then, the point processes Pn converge to P

weakly.

Remark 2.12. The condition of uniform convergence on compact sets may be relaxed.

Suppose we have a sequence of kernels Kn and a fixed reference point x∗. Before taking

the limit, we first perform a centering and rescaling of the form

x 	→ Cnα(x− x∗) (2.1.46)

with suitable values of C, α > 0. Then in many cases of interest the rescaled kernels have a

limit

lim
n→∞

1

Cnα
Kn

(
x∗ +

x

Cnα
, x∗ +

y

Cnα

)
= K(x, y) (2.1.47)

Therefore, the scaling limit K is a kernel that corresponds to a determinantal point process

with an infinite number of points.

The physical meaning of this scaling and limiting procedure is the following: as the

number of points tends to infinity, one is interested in the local (microscopic) behaviour

of the system in specific points of the domain where the particles may lie, upon suitable

rescaling: for example, in an infinitesimal neighbourhood entirely contained in the domain

(the so-called “bulk”) or in an infinitesimal neighbourhood only including the left-most or

right-most particles on the line (the so-called “edge”).

In many different situations the same scaling limit K may appear. The phenomenon is

known as universality in Random Matrix Theory. Instances of limiting kernels are the sine

kernel ([99])

Ksine =
sin π(x− y)

π(x− y)
(2.1.48)
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and the Airy kernel ([100])

KAi =
Ai(x)Ai′(y)− Ai′(x)Ai(y)

x− y
, (2.1.49)

where Ai is the Airy function. Other “universal” kernels are the Bessel kernel, the Gen-

eralized Bessel kernel and the tacnode kernel, which will be exhaustively described in the

present thesis.

The sine kernel appears, for example, as a scaling limit in the bulk of the spectrum in

GUE (see [85, Ch. 5]) and the Airy kernel appears as a scaling limit at the edge of the

spectrum in GUE and at the soft (right) edge of the spectrum in the Laguerre ensemble

(introduced by Bronk [17]), while the Bessel kernel appears at the hard (left) edge in the

Laguerre ensemble (see [100], [101]).

2.2 Multi-time processes. Introduction of time

In this last section on point processes, we want to propose a generalization of the model of

non-intersecting random paths, introducing a time variable in the physical process. In this

way, the model will not only describe a static model in timeless thermodynamic equilibrium

(as before), but also a dynamical system which may be in an arbitrary non-equilibrium state

changing with time.

The first implementation of this dynamic regime was proposed by Dyson in [31] for the

study of the random eigenvalues of a Gaussian Unitary Ensemble.

Let consider again N non-intersecting moving particles X1(t), . . . , XN(t) on R with a

certain transition probability, conditioned to start at time t = 0 from points {ai} and to end

at final time t = 1 at points {bj}.
Now, consider a set of times 0 < τ1 < . . . < τn < 1 and corresponding Borel sets

E1, . . . , En ⊂ R. The quantity of interest is the joint probability that for all k = 1, . . . , n no

curve passes through Ek at time τk. We call again this quantity “gap probability” and it is

still a Fredholm determinant for a (matrix) operator, generalizing the one used in the scalar

case (formulæ (2.1.13)-(2.1.14)).

More precisely, the joint probability distribution of the N paths is described in terms of

product of n+ 1 determinants, as proved by S. Karlin and J. McGregor.

Theorem 2.13 ([68]). Consider N independent copies X1(t), . . . , XN(t) of a one-dimensional

strong Markov process with continuous paths and transition probability pt(x, y), conditioned

so that

Xj(0) = aj and Xj(1) = bj (2.2.1)
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where {aj}N1 and {bj}N1 are given values.

Then, the joint probability density of the process can be written as a product of n + 1

determinants:

p
(
�X(τ1) = �x1, . . . , �X(τn) = �xn

)
=

1

ZN,n

det
[
pτ1(ai, x

1
j)
]N
i,j=1

·
n−1∏
k=1

det
[
pτk+1−τk(x

k
i , x

k+1
j )

]N
i,j=1

· det [p1−τn(xn
i , bj)]

N
i,j=1 (2.2.2)

with �x i = (xi
1, . . . , x

i
N) ∈ R

N the vector of positions of the particles.

This structure does not change in the limit case ai → 0, bj → 0; we simply have to

modify with some caveat the expression of the first and last determinants.

Applying a classical result due to B. Eynard and M.L. Mehta ([33]), it is possible to

prove that such point process is actually a determinantal process and its gap probability is

a suitable Fredholm determinant.

Theorem 2.14 ([33], [46]). A measure on
(
R

N
)n

of the form (2.2.2) induces a (determi-

nantal) point process on the space {1, . . . , n} × R with correlation kernel entries

Kij(x, y) = K̃ij(x, y)− ϕij(x, y)δi<j (2.2.3)

with

K̃pq(x, y) =
N∑

i,j=1

φp,n+1(x, x
n+1
i )

(
A−1

)
ij
φ0,q(x

0
j , y) (2.2.4)

Aij = φ0,n+1(x
0
i , x

n+1
j ), φij(x, y) = p(x, y; τj − τi) (2.2.5)

ϕij(x, y) = (φi,i+1 ∗ . . . ∗ φj−1,j) (x, y). (2.2.6)

Remark 2.15. We denote by ∗ the usual convolution operation between two or more kernels

w1, . . . , wk (see [68, Formula 2.7]):

(w1 ∗ . . . ∗ wk) (ξ, η) :=

∫
Rk−1

w1(ξ, ξ1)w2(ξ1, ξ2) . . . wk(ξk−1, η)dξ1 . . . dξk−1 (2.2.7)

Once verified that this point process is indeed determinantal, our quantity of study (i.e.

the gap probability) is simply a Fredholm determinant, as in the scalar case.

Theorem 2.16. In the previous hypotheses stated in Theorems 2.13 and 2.14, given a col-
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lection of sets E1, . . . , En ⊆ R, the gap probability of the process is

P (Xi(τk) /∈ Ek, ∀ i ∀ k) = det

(
Id−[Kij]

∣∣∣∣
E1,...,En

)
(2.2.8)

with [Kij] the matrix operator with kernel entries defined in (2.2.3)-(2.2.6).

The study of gap probabilities of some relevant determinantal point process is the topic of

the present thesis. Such investigation can be addressed into two directions: finding a system

of differential equations that explicitly describe the gap probabilities themselves or studying

their asymptotic behaviour in some critical scaling regime. As claimed in the introduction

(Chapter 1), the common starting point for both of the goals is the formulation of a suitable

Riemann-Hilbert problem as it will be explained in the following Chapters 3 and 4.
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Chapter 3

Isomonodromic Theory and

Integrable operators

In the present chapter we will review the main results on the Theory of Systems of Ordinary

Differential Equations with rational coefficients and Isomonodromy Theory, that will be used

in the following Chapters 5, 6 and 7. The main references are the book by Fokas, Its et al.

[36] and the papers by the Japanese School [53], [54], [57].

We will show how it is possible to effectively study and explicitly calculate the gap prob-

ability of a determinantal point process via results borrowed from Isomonodromy Theory.

The connection bridge is the Riemann-Hilbert formalism.

On one hand, the Riemann-Hilbert formalism is an integral part of the Monodromy

Theory. It is fundamental for the study of the direct and inverse monodromy map, i.e.

the map associating the set of so-called “monodromy” data to the set of singular data of

a system of ordinary differential equations. The Hilbert’s twenty-first problem, which is

about the existence of a linear differential equation having a prescribed monodromic group,

is commonly called Riemann-Hilbert problem, precisely for the massive use of the Riemann-

Hilbert formalism in the developments of such problem.

On the other hand, we will see that for a particular class of integral operators (called

“integrable” operators) there exist a natural Riemann-Hilbert formulation which will allow

to study the variation of their Fredholm determinant. Many universal determinantal point

processes are defined through correlation kernels that belong to such types of integral op-

erator, therefore their gap probabilities (i.e. the Fredholm determinants of the respective

integral operator) can be linked to a suitable Riemann-Hilbert problem and can be explicitly

described in terms of a solution to a systems of ODE.

Generally speaking, we define a Riemann-Hilbert problem as a jump problem for piecewise

analytic functions. Consider an oriented smooth contour C in the complex plane. The contour
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might have points of self-intersection and it might have more than one connected component.

The orientation induces a +-side and a −-side on C, where the +-side lies to the left and

the −-side to the right if one traverses the contour according to the orientation. Suppose,

in addition, that we are given a map J : C → GLN(C), where GLN(C) is the set of N ×N

invertible matrices. A Riemann-Hilbert problem consists in finding an N ×N matrix-valued

function Γ = Γ(λ) with the following properties

• analyticity: Γ is analytic on the whole complex plane off C.

• jump: the limit Γ− of Γ from the minus side of C and the limit Γ+ from the plus side

of C are related by

Γ+(λ) = Γ−(λ)J(λ) λ ∈ C. (3.0.1)

• normalization: Γ tends to the identity matrix as λ→∞ (in general, it is possible to

fix the value of Γ at a given point z0 ∈ C\C: Γ(z0) = Γ0, Γ0 ∈ GLN(C)).

More details on specific Riemann-Hilbert problems will be given in this chapter, in par-

ticular in Section 3.3 and 3.4, and in the next Chapter 4.

3.1 Systems of ODEs with Rational Coefficients

We will state here the first results on existence of a solution to an ordinary differential equa-

tion with rational coefficient in the complex plane. The main reference will be [36, Chapter

1] The main purpose of this section is the introduction and definition of the “monodromy

data” which will play an important role in the subsequent section on Isomonodromy Theory.

Let consider a first-order linear ODE in the complex plane

dΨ

dλ
= A(λ)Ψ(λ) (3.1.1)

where Ψ(λ) and A(λ) are both N × N matrix-valued functions and, in particular, A is a

meromorphic function with rational entries. The (local) behaviour of the solution Ψ near a

given point λ0 ∈ CP 1 depends on the type of point we are considering. We have three types

of scenario.

The first case occurs when the coefficient matrix A(λ) is holomorphic at the point λ0

and, if λ0 =∞, A(λ) has a zero of second order or higher. In this case, existence of solutions

can be easily proved
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Theorem 3.1 ([41]). Let A(λ) be a N ×N matrix-valued function holomorphic in a suitable

neighbourhood Bλ0 of λ0. Given a constant matrix Ψ0, there exists a unique solution Ψ(λ)

of the equation (3.1.1), holomorphic in Bλ0 and such that Ψ(λ0) = Ψ0.

The second case occurs when the coefficient matrix A(λ) has a simple pole at λ0 or,

if λ0 = ∞, A(λ) has a simple zero. Let assume, for the sake of simplicity, that all the

eigenvalues of the residue matrix A0 := limλ→λ0(λ− λ0)A(λ) are distinct modulo Z\{0}, i.e.

P−1A0P = Λ0, (Λ0)ij = αiδij, αi − αj /∈ Z\{0}. (3.1.2)

Then, the following result on existence of a solution holds.

Theorem 3.2 ([107]). Given A(λ) a N×N matrix-valued function holomorphic in a suitable

punctured disk Bλ0\{λ0} and let λ0 ∈ CP 1 be a simple pole for A(λ), in the generic non-

resonant hypotesis (3.1.2), then there exists a fundamental solution Ψ(λ) to the equation

(3.1.1) of the form

Ψ(λ) = Ψ̂(λ)ξΛ0 (3.1.3)

where Ψ̂(λ) is holomorphic and invertible in a Bλ0 and ξ is a local coordinate: ξ := λ − λ0

if λ0 ∈ C or ξ := 1/λ if λ0 =∞.

Remark 3.3. In the general case, where the eigenvalues of A(λ) may coincide modulo a

non-zero integer, the fundamental solution shows an extra term involving a constant nilpotent

matrix determined by the eigenvalues themselves.

The last case occurs when the coefficient matrix A(λ) has a multiple pole at λ0 or, if

λ0 =∞, A(λ0) does not vanish; in particular, the order of the pole minus 1 is called Poincaré

rank of the singularity λ0. Let assume, again for the sake of simplicity, that the coefficient

A−r (where r is the Poincaré rank) of the leading order of singularity in the Laurent series

of A(λ) in the neighbourhood Bλ0 of λ0 has distinct eigenvalues, i.e.

P−1A−rP = Λ−r, detP �= 0, (Λ−r)ij = αiδij, αi �= αj for i �= j. (3.1.4)

Then, we have the following result.

Theorem 3.4 ([57], [107]). Under the generic condition (3.1.4), there exists a unique formal
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fundamental solution Ψ(λ) to the equation (3.1.1) of the form

Ψf (λ) = P

( ∞∑
k=0

Ψkξ
k

)
eΛ(ξ), Ψ0 = I (3.1.5)

Λ(ξ) =
−1∑

k=−r

Λk

k
ξk + Λ0 ln ξ (3.1.6)

where all the matrices Λk, k = −r, . . . , 0, are diagonal and Λ−r is the Jordan form of the

coefficient matrix A−r; moreover, all the coefficients Ψk and the diagonal exponent Λ(ξ) can

be determined recursively from the Laurent expansion of A(λ) in the neighbourhood Bλ0.

In general, the series in (3.1.5) does not converge (thus the denomination “formal”).

Nevertheless, it can be interpreted as the asymptotics of a genuine fundamental solution of

(3.1.1) as λ→ λ0 along any path belonging to specific sectors Ω of Bλ0 , called Stokes sectors,

which will ensure uniqueness of of the solution:

Ψ(λ) ∼ Ψf (λ) λ→ λ0, λ ∈ Ω. (3.1.7)

Remark 3.5. By asymptotic behaviour, we mean the following (see [107]). Let Ψf (λ) :=∑∞
k=0 Ψkλ

k be a formal power series. We say that Ψf is the asymptotic series (or expansion)

of the function Ψ(λ) at a point λ0, i.e.

Ψ(λ) ∼ Ψf (λ), λ→ λ0, λ ∈ Ω (3.1.8)

being Ω a given subset of CP 1, if for every positive number m ∈ N there exists a positive

constant Cm,Ω such that ∥∥∥∥∥Ψ(λ)−
m−1∑
k=0

Ψkλ
k

∥∥∥∥∥ ≤ Cm,Ω|λ− λ0|m (3.1.9)

for every λ within a compact subset Ω′ ⊂ Ω.

A neighbourhood of a singular point λ0 with Poincaré rank r can always be covered by

2r different Stokes sectors, in a canonical way. For sufficiently small δ > 0 any sector of the

form

Ω = { ξ ∈ C | 0 < |ξ| < ρ, θ1 < arg ξ < θ2 } θ2 − θ1 =
π

r
+ δ (3.1.10)

24



is a Stokes sector; then, each of the sectors

Ωn = { ξ ∈ C | 0 < |ξ| < ρ, θ1 +
π

r
(n− 1) < arg ξ < θ2 +

π

r
(n− 1) }

= ei
π
r
(n−1)Ω n = 1, . . . , 2r (3.1.11)

Ω1 = Ω2r+1 = Ω (3.1.12)

is a Stokes sector as well. Therefore, we can associate to a given formal solution (3.1.5) 2r

genuine solutions Ψj, j = 1, . . . , 2r (one for each Stoke sector) such that

Ψj(λ) ∼ Ψf (λ) λ→ λ0, λ ∈ Ωj, j = 1, . . . , 2r. (3.1.13)

Moreover, these solutions differ by a non-trivial matrix Sj (Stokes matrix) whenever two

consecutive Stokes sectors overlap

Sj := Ψ−1j (λ)Ψj+1(λ) j = 1, . . . , 2r. (3.1.14)

For more details on the Stokes phenomenon we refer to [36] and [107].

Theorems 3.1, 3.2 and 3.4 guarantee the existence of a local solution to the system

(3.1.1) in a neighbourhood of either a regular point or a singular point. We will now state

the fundamental Monodromy Theorem, which will allow us to build a global solution to a

given system of ordinary differential equations with rational coefficients, and we will then

focus on the concept of monodromy data.

Given a linear ODE of the form (3.1.1), let denote αν ∈ CP 1, ν = 1, . . . ,m, the poles

of the coefficient matrix A(λ). Given a curve γ : [0, 1] → CP 1\{aν}ν=1,...,m, t 	→ γ(t), the

following result holds.

Theorem 3.6 (Monodromy theorem, [41]). Let Ψ(λ) =
∑∞

k=0 Ψkξ
k be the germ of a solution

of equation (3.1.1) at the point a = γ(0). Then, Ψ(λ) can be analytically continued along γ

to the point b = γ(1), the continuation depending only on the homotopy class of γ.

Even more,

Corollary 3.7. Let Ψ(λ) be a germ of solution of equation (3.1.1), then Ψ(λ) can be analyti-

cally continued on the universal covering of the punctured Riemann sphere CP 1\{aν}ν=1,...,m.

Recapping all the results described so far, given a linear ODE as (3.1.1), to each of the

singular points of A(λ) we can associate a certain set of data. In particular, we have

• the formal monodromy exponent Λ
(ν)
0 (formula (3.1.3)), which may be paired with a

nilpotent matrix in the general case, as in Remark 3.3, if aν is a simple pole;
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• the Stokes phenomenon (formulæ (3.1.6)-(3.1.14))

S(ν) :=
{
Λ

(ν)
−r , . . . ,Λ

(ν)
−1,Λ

(ν)
0 ;S1, . . . , S2r

}
(3.1.15)

where Sj are the Stokes matrices, if aν is a singular point with Poincaré rank r.

All these quantities are called “local monodromy data” for each singular point aν .

If we fix a point a0 ∈ CP 1\{aν}ν=1,...,m and matrix Ψ0 ∈ GLN(C) as initial condition

to the equation (3.1.1) Ψ(a0) = Ψ0, then Theorems 3.2 and 3.4 it is possible to build

a local solution to (3.1.1) in a neighbourhood of each singular point aν and, thanks to

the Monodromy Theorem 3.6, each of these solutions admits analytic continuation on the

universal covering of CP 1\{aν}. Therefore, all these solutions must differ from each other

by a constant (right) matrix multiplier called “connection matrix”, i.e. denoting Ψ(λ) the

fundamental solution determined by the initial condition Ψ(a0) = Ψ0, then

Ψ(λ) = Ψ(ν)(λ)Cν =
(
Ψ̂(λ)ξΛ0

ν

)
Cν if aν = simple pole (3.1.16)

Ψ(λ) = Ψ
(ν)
1 (λ)Cν if aν = sing. point with rank r (3.1.17)

where Ψ
(ν)
1 (λ) ∼ Ψν

f (λ) (as λ → aν) is the canonical solution in the first Stokes sector Ω1

and Cν is the connection matrix.

Definition 3.8. Given a linear ODE (3.1.1) with a1, . . . , ap simple poles and ap+1, . . . , am

singular point with Poincaré rank rk (k = p + 1, . . . ,m), the global monodromy data is

the set of the following data

M :=
{
a1, . . . , am; Λ

(1)
0 , . . . ,Λ

(p)
0 ;S(p+1), . . . ,S(m);C1, . . . , Cm

}
. (3.1.18)

The global monodromy data M completely characterizes the global behaviour of the

solutions of a linear system of the type (3.1.1) and determines uniquely the system itself.

3.2 Isomonodromic Deformations

In this section we will briefly illustrate the theory of Isomonodromic deformation. We will

report only the main facts that are stategic for our purposes (see Chapters 5, 6 and 7), since

the subject is very wide. We refer to the triad of papers [53], [54], [57] as well as to the book

[36, Chapter 4] for an exhaustive exposition.
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Consider again a linear ODE with rational coefficients of the form

dΨ

dλ
= A(λ)Ψ(λ) (3.2.1)

Let assume that the coefficient matrix A(λ) depends holomorphically on certain additional

parameters s1, . . . , sq, called “times”, belonging to some parameter space S ⊆ C:

A(λ) = A(λ,�s) �s = (s1, . . . , sq), q ≥ 1, �s ∈ S (3.2.2)

Definition 3.9. The holomorphic family (3.2.2) is an admissible deformation of the

linear equation (3.2.1) if

1. the number of singular points does not depend on the times: aμ(�s) �= aν(�s), ∀ μ, ν ∀ �s.
Moreover, we require the points to be always separable:

∃ disks {Bν} such that aν(�s) ∈ Bν (∀�s), Bμ ∩ Bν = ∅ μ �= ν; (3.2.3)

2. the type of Jordan form of the leading coefficient of the Laurent series of the matrices

A(λ,�s) at each singular point aν(�s) does not depend on �s ∈ S;

3. at each singular point aν(�s) with rank rν , the set of Stokes sectors {Ω(ν)
n }n=1,...,2rν is

holomorphically equivalent under the map λ 	→ λ− aν(�s);

4. canonical solutions are holomorphic with respect to the times and the asymptotic

condition (3.1.5) at a singular point with positive rank holds uniformly with respect

to �s.

Moreover, we highlight the following important class of deformations.

Definition 3.10. An admissible deformation is called isomonodromic deformation if the

set of canonical solutions can be chosen in such a way that

- the formal monodromy exponents Λν
0,

- the Stokes matrices S(ν)
n ,

- the connection matrices Cν

are independent on the times �s ∈ S.
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The fundamental fact about isomonodromic deformations is that they can be described

by suitable systems of nonlinear differential equations.

Consider the logarithmic derivative with respect to times

U(λ,�s) := dΨΨ−1, dΨ =
∑
j

∂Ψ

∂sj
dsj. (3.2.4)

Without lost of generality let assume am = a∞ =∞. Then, the following result holds.

Theorem 3.11. The differential form U(λ,�s) (3.2.4) is a rational matrix-valued function

with respect to the variable λ. Its poles coincide with the singular points aν (ν = 1, . . . ,m−
1,∞) and U(λ,�s) is determined uniquely and explicitly as a differential matrix-valued form

on the manifold A of the linear systems having the given number m of singularities (with

given Poincaré rank rν at each point):

U(λ) = U
(
λ; {A(ν)

j }, {aν}
)

(3.2.5)

where the matrices A
(ν)
j are the coefficients of the decomposition of the rational function A(λ)

over its principal part, i.e.

A(λ) = A(∞)(λ) +
m−1∑
ν=1

A(ν)(λ) (3.2.6)

A(ν)(λ) =
rν+1∑
k=1

(λ− aν)
−kA(ν)

−k+1 ν = 1, . . . ,m− 1 (3.2.7)

A(∞)(λ) = −
r∞−1∑
k=0

λkA
(∞)
−k−1 if r∞ > 0 (3.2.8)

A(∞)(λ) ≡ 0 if r∞ = 0. (3.2.9)

Therefore, the function Ψ(λ,�s), in addition to the basic λ-equation (3.2.1), also satisfies

an auxiliary linear system with respect to the parameters �s:

dΨ(λ) = U(λ,�s)Ψ (3.2.10)

or, equivalently,
∂Ψ

∂sj
= Uj(λ)Ψ (3.2.11)

given U(λ) =
∑

j Uj(λ)dsj.

Cross-differentiating the overdetermined system (3.2.1)-(3.2.10), we find the following
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compatibility conditions, also called “zero curvature equations”:

dA− ∂U

∂λ
+ [A,U ] = 0 (3.2.12)

identically in λ. Since the above equation is a rational function in λ, it is possible to find

a finite system of non-linear differential equations for the matrix coefficients A
(ν)
k = A

(ν)
k (�s)

by simply equating to zero the corresponding principal parts. The system obtained is also

called isomonodromic deformation equations.

The equation (3.2.12) is an overdetermined system of nonlinear differential equations. It

is possible to show (see [57]) that such system is integrable in the sense of Frobenius and that

the largest independent set of deformation parameters �s can be chosen as the set of singular

points a1, . . . , am−1 plus the matrix entries of the diagonal matrices Λ
(ν)
k (k = 1, . . . , rν > 0,

ν = 1, . . . ,m− 1,∞).

Moreover, in the overdetermined system

∂Ψ

∂λ
= A(λ)Ψ dΨ = U(λ)Ψ (3.2.13)

we can recognize a Lax representation for the nonlinear system (3.2.12), thus linking the

theory of isomonodromy deformations to the Soliton Theory (see e.g. [30]).

The use of the Lax pair above in the analysis of the solutions of the isomonodromic

deformation equations (3.2.12) follows from the fact that the monodromy data of the λ-

equation, i.e.

{Λ(ν)
0 ;S(ν), Eν } , (3.2.14)

forms a complete set of first integrals of the system (3.2.12). Therefore, the problem of the

integration of the nonlinear equations (3.2.12) is reduced to the analysis of the direct and

inverse monodromy maps of the system (3.2.1), i.e. the map that associates to the ODE

(3.2.1) the global monodromy data M (3.1.18) and viceversa.

The τ-function

To each solution of the deformation equations (3.2.12) it is possible to canonically associate

the following 1-form, introduced for the first time by M. Jimbo, T. Miwa and K. Ueno in

29



[57]:

ω :=
∑

ν=1,...,m−1,∞
ων

ων := − res
λ=aν

Tr

(
Ψ(ν)(λ)−1

∂Ψ(ν)

∂λ
(λ)dΛ(ν)(λ)

)
(3.2.15)

where Λ(ν) is defined in (3.1.6) and d is the exterior differentiation with respect to the times

�s.

The fundamental property of the 1-form ω is the following theorem.

Theorem 3.12 ([57]). For any solution of the isomonoromic deformation equations (3.2.12),

the 1-form (3.2.15) is closed dω = 0.

Therefore, there exists a scalar function of the deformation parameteres τ satisfying

ω = d ln τ. (3.2.16)

Moreover, the 1-form ω enjoys the Painlevé property (the only movable singularities are

poles), which in turns translates to the fact that the τ function is holomorphic everywhere on

the universal covering manifold of Cq\V , where q is the number of deformation parameters

and V is the set of following critical varieties

aν(�s) = aμ(�s) for some μ �= ν, for some �s (3.2.17)

α
(ν)
i − α

(ν)
j ∈ Z\{0} if aν = simple pole (3.2.18)

α
(ν)
i = α

(ν)
j if aν = sing. point with rank rν (3.2.19)

which we excluded at the beginning of our exposition: see (3.1.2) and (3.1.4) together with

point 1. in Definition 3.9. We refer to the article by T. Miwa [86] for a detailed proof of the

above facts.

3.3 Integrable kernels

In this section, we temporarily detach from the subject of Monodromy Theory and we

analyze a special class of integral operators, with a collection of curves in the complex plane

as domain. Such operators are called “integrable operators” and they were first introduced

by A. R. Its, A. G. Izergin, V. E. Korepin and N.A. Slavnov in the paper [50].

Its, Izergin, Korepin and Slavnov developed their theory to establish a connection between
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certain Fredholm determinants representing quantum correlation functions for Bose gas and

the Painlevé V equation.

The peculiarity of these Its-Izergin-Korepin-Slavnov (IIKS) operators resides in the fact

that their solvability, i.e. the existence of the operator (Id−K)−1 (K being an IIKS operator),

is equivalent to solving a suitable boundary-value Riemann-Hilbert problem in the complex

plane. Thanks to the Jacobi formula (see (3.4.1)), it will be possible to study the Fredholm

determinant of the operator K through the Riemann-Hilbert problem constructed above,

leading the way to a powerful connection between the gap probability (i.e. the Fredholm

determinant) and the theory of isomonodromy deformations, as it will later be explained.

We refer to the original paper [50] as well as to the paper [45] to review the concepts of

IIKS operators and their application to the present case.

Consider a p× p matrix Fredholm integral operator acting on C
p-valued functions φ(λ),

K(φ)(λ) =

∫
Σ

K(λ, μ)φ(μ) dμ (3.3.1)

defined along a piecewise smooth, oriented curve Σ in the complex plane (possibly extending

to ∞), with integral kernel of the special form

K(λ, μ) =
fT (λ)g(μ)

λ− μ
(3.3.2)

where f,g are rectangular r × p matrix valued functions, p < r. The most common case is

p = 1, r = 2 defining a scalar integral operator K. Let assume that f and g are smooth

functions along the connected components of Σ, such that

fT (λ)g(λ) = 0, (3.3.3)

in order to ensure that K is nonsingular and the diagonal values are given by K(λ, λ) =

f ′T (λ)g(λ) = −fT (λ)g′(λ).
For the sake of simplicity, let also assume that the functions f and g can be analytically

continued to a neighborhood of each of the connected components of Σ.

Fredholm determinants of some operators of this type appear as eigenvalue distributions

for random matrix ensembles ([85], [98], [99]), as in the case at hand, and as generating

functions for correlators in many integrable quantum field theory models ([50], [56]).

An crucial observation is that the resolvent operator

R := (Id−K)−1K (3.3.4)
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is also in the same class., i.e. R may also be expressed as an integral operator of the form

(3.3.1)-(3.3.2)

R(v)(λ) =

∫
Γ

R(λ, μ)v(μ) dμ (3.3.5)

R(λ, μ) :=
FT (λ)G(μ)

λ− μ
(3.3.6)

where the matrix-valued functions F and G are given by

FT = (Id−K)−1fT = (Id+R)fT (3.3.7)

G = g(Id−K)−1 = g(Id+R), (3.3.8)

the operator (Id−K)−1 acting to the right in the first line and to the left in the latter.

Similarly, these quantities satisfy the non-singularity condition FT (λ)G(λ) = 0, so that the

resolvent may be defined for diagonal values as well: R(λ, λ) = F′T (λ)G(λ) = −FT (λ)G′(λ).

Given such an integrable operator K (3.3.1)-(3.3.2), it turns out that that determining

its resolvent R is equivalent to solving a Riemann-Hilbert problem. Let start by defining

the following r × r matrix valued function χ(λ)

χ(λ) := Ir +

∫
Σ

F(μ)gT (μ)

λ− μ
dμ (3.3.9)

with F given in (3.3.7). By construction, χ(λ) is analytic on the complement of Σ and

extends to infinity off Σ, with asymptotic expansion

χ(λ) = Ir +O
(
1

λ

)
as λ→∞ (3.3.10)

χ(λ) = O (ln(λ− α)) as λ→ α (3.3.11)

with α any endpoint of a connected component of Σ. Moreover, it is easy to see that the

function χ(λ) has jump discontinuities across Σ given by

χ+(λ) = χ−(λ)J(λ) λ ∈ Σ (3.3.12)

where χ+ and χ− are the limiting values of χ as Σ is approached from the left and the right,

respectively, according to the orientation of Σ. The r × r invertible jump matrix J(λ) is

defined as the following rank-p perturbation of the identity matrix Ir:

J(λ) := Ir − 2πif(λ)gT (λ). (3.3.13)

32



Collecting the considerations above, we can state that if the operator Id−K is invert-

ible, then the function (3.3.9) defines a solution to a Riemann-Hilbert problem withs jump

condition (3.3.12)-(3.3.13) and asymptotic behaviour (3.3.10)-(3.3.11). Furthermore, it can

be proved that the converse is also true: if there exists a matrix-valued function χ solution

to the Riemann-Hilbert problem (3.3.10)-(3.3.13), then χ can be written in the form (3.3.9)

and Id−K is invertible.

In conclusion, there exists equivalence between the inversion of the operator Id−K, with

K an integrable kernel in the sense of Its-Izergin-Korepin-Slavnov (3.3.1)-(3.3.2), and the

solution to the Riemann-Hilbert problem (3.3.10)-(3.3.13). The general theorem states as

follow.

Theorem 3.13 (Section 1.2, [45]). Consider an IIKS integrable operator K defined on a

collection of orientend contours Σ. The operator Id−K is invertible if and only if there exist

a solution to the following Riemann-Hilbert problem: find a matrix valued function Γ such

that

Γ+(λ) = Γ−(λ)J(λ) λ ∈ Σ (3.3.14)

Γ(λ) = Ir +O
(
1

λ

)
λ→∞ (3.3.15)

Γ(λ) = O (ln(λ− α)) λ→ α (3.3.16)

with α any endpoint of a connected component of Σ and the jump matrix

J(λ) := Ir − 2πi f(λ)g(λ)T . (3.3.17)

Moreover, the resolvent of the operator K will be an integral operator of IIKS form as well,

with kernel

R(λ, μ) =
f(λ)TΓ(λ)T (Γ−1(μ))T g(μ)

λ− μ
. (3.3.18)

3.4 Fredholm determinants as Isomonodromic τ func-

tions

The purpose of the coming section is to get to the core of the connection between gap

probabilities of determinantal point processes and integrable systems. The linking ring is

precisely the theory of Riemann-Hilbert problem and IIKS operators that we introduced

above.
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The IIKS theory has been lately used extensively in the theory of random matrices and

random processes. Indeed these are some of its general features:

• The Riemann-Hilbert problem typically has jumps which are conjugated to constant

jumps, therefore the solution of the Riemann-Hilbert problem solves an ODE with

meromorphic coefficients (connecting to the theory of isomonodromic deformations);

• in some interesting cases, the Fredholm determinant coincides with the isomonodromic

τ function of Jimbo, Miwa and Ueno.

First of all we recall a basic deformation formula that relates the Fredholm determinant

to the resolvent operator called Jacobi formula for the variation of determinants

d ln det(Id−K) = −Tr
(
(Id−K)−1dK

)
= d ((Id+R) dK) (3.4.1)

where d is the differential with respect to any auxiliary parameters on which K may depend.

Such relation is the key formula that will allow to describe gap probabilities of determi-

nantal processes in terms of explicit quantities that will have a precise geometric meaning.

We will show that the Fredholm determinant of a given IIKS integrable kernel, thought

of as a function of a set of parameters, is a τ function (in the sense of [53], [54], [57]) of

the corresponding isomonodromy problem. In other words, it can be expressed through a

solution of a system of differential equations, which is completely integrable.

We refer to the papers [9] and [11] for a thorough exposition on the connection between

Fredholm determinants and isomonodromic τ function. We will report here only the principal

facts that will be functional to the present thesis.

We start by considering a general notion of τ function associated to any Riemann-Hilbert

problem (RHP) depending on parameters and which will reduce to that of Jimbo-Miwa-Ueno

([53], [54], [57]) in case such a Riemann-Hilbert problem coincides with the one associated

to a rational ODE.

Consider a Riemann-Hilbert problem defined on a collection of oriented contours Σ and

depending on additional deformation parameters �s ∈ S. For the sake of simplicity, we assume

that the contours are either loops or they extends to infinity, so that there are no endpoints.

Γ+(λ;�s) = Γ−(λ;�s)J(λ;�s) λ ∈ Σ (3.4.2)

Γ(λ;�s) = Ir +O
(
1

λ

)
λ→∞ (3.4.3)

where the jump matrix J(λ;�s) : Σ× S → SLr(Σ) is a suitably smooth functions of λ and �s.
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On the space of deformation parameters S, we introduce the following one-form

ω(∂) :=

∫
Σ

Tr
(
Γ−1− (λ)Γ′−(λ)Ξ∂(λ)

) dλ

2πi
(3.4.4)

Ξ∂(λ) := ∂J(λ)J−1(λ) (3.4.5)

where ′ is the derivative with respect to λ (the dependence on �s is implicit).

We point out that the definition of ω is valid for arbitrary jump matrices. In the case

of the Riemann-Hilbert problem built up from an IIKS integrable kernel, where the jump

matrix reads

J(λ,�s) = Ir − 2πif(λ,�s)gT (λ,�s), (3.4.6)

we can advance our study of such one-form and we will be able to relate it to a Fredholm

determinant up to a certain explicit correction term.

Theorem 3.14 (Theorem 2.1, [11]). Let f(λ;�s), g(λ;�s) : Σ×S → Matr×p(C) be sufficiently

smooth functions and consider the Riemann-Hilbert problem (3.4.2)-(3.4.3) with jump matrix

(3.4.6). Given any vector field ∂ in the space of the parameters S, the following equality holds

ω(∂) = ∂ ln det(Id− K)−H(J) (3.4.7)

where K is the IIKS integrable operator with kernel

K(λ, μ) =
f T (λ)g(μ)

λ− μ
λ, μ ∈ Σ (3.4.8)

and the correction term is

H(J) :=

∫
Σ

(
∂f ′ Tg+ f ′ T∂g

)
dλ− 2πi

∫
Σ

gT f ′∂gT f dλ. (3.4.9)

Proof. The result follows from the use of the Jacobi formula applied to the specific case of an

IIKS integrable kernel, where the definitions of both the kernel and the resolvent are explicit

in terms of the Riemann-Hilbert problem (3.3.10)-(3.3.13).

On the other hand, it is possible to show that ω is also the logarithmic total differential

of the isomonodromic τ -function introduced by Jimbo, Miwa and Ueno, in the case when

the Riemann-Hilbert problem corresponds to a rational ODE.

Theorem 3.15 (Theorem 5.1 and Proposition 5.1, [9]). The one-form ω restricted to the

(sub)-manifold of isomonodromic deformations is closed and coincides with the Jimbo-Miwa-

Ueno differential ωJMU ([53, 54, 57]).
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It is thus possible to define, up to a nonzero multiplicative constant, the isomonodromic

τ -function

τJMU = exp

{∫
ω

}
. (3.4.10)

In the special case where the extra term H(J) ≡ 0, the connection between Fredholm

determinant and τ -function becomes linear and explicit.

Corollary 3.16. In the same hypotheses of Theorems 3.14 and 3.15, if H(J) ≡ 0, then the

isomonodromic τ -function coincides with the Fredholm determinant of the IIKS integrable

operator K

τJMU = det(Id−K). (3.4.11)

The above powerful results have been applied to several settings, where well-known IIKS

integrable operators arose in the description of certain universal behaviours in Random

Matrix Theory, self-avoiding random walks or growing models. The first applications were

originally carried out on the Airy process and the Pearcey process by M. Bertola and M.

Cafasso ([11], [10]). The present thesis deals with other well-known (universal) processes,

which will be later described in details, namely the Bessel (Chapter 5), the Generalized

Bessel (Chapter 6) and tacnode processes (Chapter 7).
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Chapter 4

Asymptotic Analysis. The Steepest

Descent Method

Over the last three decades, the nonlinear Steepest Descent Method for the asymptotic

analysis of Riemann-Hilbert problems has been successfully applied to prove rigorous results

on long time, long range and semiclassical asymptotics for solutions of completely integrable

equations and correlation functions of exactly solvable models ([22], [23], [63], [64], [66]),

asymptotics for orthogonal polynomials of large degree ([19], [20]), the eigenvalue distribution

of random matrices of large dimension and related universality results ([21]), important

results in combinatorial probability ([6]).

A preliminary application of the stationary phase idea was first performed on a Riemann-

Hilbert problem related to a nonlinear integrable equation by Its in [51], but the method

became systematic and rigorous in the work of Deift and Zhou [24] and [25].

In analogy to the linear stationary-phase and steepest-descent methods (see for example

[1, Section 6]), where one asymptotically reduces an exponential integral to another which

can be exactly evaluated up to a small error term, in the nonlinear case one asymptotically

reduces the given Riemann-Hilbert problem to an exactly solvable one up to a small error

term as well. On the other hand, the nonlinear asymptotic theory shows an extra feature

which is peculiar of this method, i.e. the Lax-Levermore variational problem ([79]), closely

related to the so-called “g-function”, which is crucial in many situations in order to transform

Riemann-Hilbert problems into others which can be solved in exact form.

The steepest descent method that will be used in the present work (Chapter 7) is the

original version of the non-linear Deift-Zhou method, where the use of the g-function is

not needed. However, all the main ingredients are present: identifying stationary points,

deforming contours to contours of steepest descent and approximating the original problem

with a solvable one.
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We refer to [65] for an introductory description of the theory and to [1, Section 6] for

the first results on the linear steepest descent method. We will develop here only the main

ideas of the nonlinear method, which will be used later, while we refer to the original paper

by Deift and Zhou [24] as main reference. Nevertheless, we will first recall some guidelines

on the linear method, in order to give some motivations and a general idea of asymptotics

evaluation and approximations of quantities in certain critical regimes.

4.1 The linear method

Consider the following integral

I(k) =

∫
C

f(z)ekV (z)dz (4.1.1)

where C is a contour in the complex z-plane and f(z), V (z) are sufficiently smooth functions

(for the sake of simplicity we can assume them to be analytic), V (z) decaying at infinity

sufficiently fast so as to guarantee the convergence of the integral. We are interested in

evaluating its asymptotic behaviour as k → +∞, in particular the order of magnitude at

which I(k) vanishes for large k.

A motivation for such study comes from the analysis of solutions to differential equations

which are given in closed form as an exponential integral. A well-known example is the

solution to the Schrödinger equation of a free particle

iψt + ψxx = 0 (4.1.2)

ψ(x, t) =

∫
R

ψ̂0(ξ)e
iξx−iξ2t dξ

2π
(4.1.3)

where ψ̂0(ξ) is the Fourier transform of the initial data ψ(x, 0) = ψ0(x). Although such

integral provides the exact solution, its true content is not very explicit. In order to better

understand the properties of the solution, it may be useful to study its behaviour for large

time t or for large space variable x; frequently, the interesting limit is t→∞ with ratio x/t

fixed.

The basic idea to evaluate (4.1.1) is to deform the given contour C, using the fact that the

integrand functions are analytic, into a new contour C̃ such that the path C̃ passes through

a point z0 for which V ′(z0) = 0 (saddle point) and the phase has constant imaginary part

(V ) = constant on C̃. Thanks to this deformation, we are now dealing with an integral

which can be analyzed directly, using the Laplace method (see [1, Chapter 6.2.3]) and we

can recover asymptotics valid to all orders. Indeed, performing a suitable change of variables

38



at the stationary point z0, one can prove that the major contribution to the integral is given

by the points that are near z0.

Theorem 4.1 (see Section 6.4.1, [1]). Consider the integral (4.1.1) and assume that the

contour C can be deformed into a contour C̃ passing through the saddle point z0 of order

n− 1, i.e.

dV

dzj

∣∣∣∣
z=z0

= 0, ∀j = 1, . . . , n− 1 (4.1.4)

dV

dzn

∣∣∣∣
z=z0

=
∣∣V (n)(z0)

∣∣ eiα, α > 0. (4.1.5)

Assuming that f(z) ∼ β(z − z0)
γ−1 in a neighbourhood of z0 (�(γ) > 0), then

∫
C

f(z)ekV (z)dz ∼ β(n!)
γ
n eiγθ

n

ekV
(n)(z0) Γ

(
γ
n

)
(k |V (n)(z0)|)

γ
n

. (4.1.6)

Remark 4.2. It is worth pointing out that, even if the evaluation of the integral (4.1.1)

reduces to the evaluation of a local quantity in a neighbourhood of the saddle points, the

choice of the new contour of integration C̃ requires a study of the global behaviour of the

phase V .

Remark 4.3. The name “steepest descent method” comes from the fact that, thanks to the

Cauchy-Riemann equations, the paths defined by the relation (V ) = constant coincide with

those along which either the decrease of the corresponding real part is minimal (paths of

steepest descent) or the increase of the real part is maximal (paths of steepest ascent). In

evaluating the integral (4.1.1) one will consider the former type of paths.

The nonlinear steepest descent method generalizes the ideas above, but also employs new

ones.

4.2 The non-linear method

Suppose we are given a Riemann-Hilbert problem on a collection of contours Σ, depending

on a parameter k:

Γ+(λ, k) = Γ−(λ, k)J(λ, k), λ ∈ Σ, (4.2.1)

Γ(λ, k) = I +O
(
1

λ

)
, λ→∞. (4.2.2)
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We are again interested in studying the asymptotic behaviour of the solution as k → +∞.

Writing the entries of the jump matrix as exponentials, the first step to perform is to

identify the stationary points of the phases appearing in J .

It was first realized by Its ([51], [52]) and then fully implemented in the work of Deift and

Zhou ([24]) that an accurate estimate of the asymptotic behaviour of the solution Γ in the

regime k → +∞ can be achieved by replacing the problem (4.2.1)-(4.2.2) by “local” model

Riemann-Hilbert problems located in a small neighbourhood of the stationary phase points.

Therefore, the non-linear method borrows from the linear one the same idea of focusing

on the neighbourhoods of specific critical points of the problem, which govern the leading

behaviour of the quantity under consideration (Γ in this case) in the regime k → +∞. On

the other hand, the non-linear steepest descent method shows also a completely new feature,

the so-called finite-gap g-function mechanism.

The g-function was introduced in [26] and in [22] but the powerfulness of such idea and

the connection to the Lax-Levermore variational problem ([79]) was first explored in the

analysis of the KdV equation in [23].

The introduction of a g-function in our asymptotic analysis becomes necessary when the

Riemann-Hilbert problem shows some particular singularities that depends on the parameter

k and cannot be factored away via a suitable rescaling or conjugation of the problem (4.2.1)-

(4.2.2).

As an example, we describe the well-known classic problem of the asymptotics of orthog-

onal polynomials ([37], [18, Chapter 7]). First of all, we state the Riemann-Hilbert problem

for orthogonal polynomials with respect to a given measure e−ΛV (x)dx, where Λ is a suitable

parameter that will later be sent to infinity and V (x) is a polynomial of some even degree

with positive leading coefficient. V (x) is generically called potential or external field in the

literature, for reasons that will be clear in a moment.

We want to find a 2 × 2 matrix-valued function Y (z) = Yn(z), analytic on C\R, such
that

Y+(z) = Y−(z)

[
1 e−ΛV (x)

0 1

]
z ∈ R (4.2.3)

Y (z) =

(
I +O

(
1

z

))
znσ3 z →∞, arg(z) ∈ (0, π) ∪ (π, 2π). (4.2.4)

Theorem 4.4. The above Riemann-Hilbert problem admits a unique solution of the form

Yn(z) =

[
pn(z)

∫
R

pn(x)e−ΛV (x)

x−z
dx
2πi

−2πi
hn−1

pn−1(z) −1
hn−1

∫
R

pn−1(x)e−ΛV (x)dx
x−z

]
(4.2.5)
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where pn, pn−1 are the monic orthogonal polynomials for the measure e−ΛV (x)dx and hn−1 =

‖pn−1‖2L2.

Sketch of the proof. The uniqueness follows from standard considerations on the determi-

nant. As for the form of the solution (4.2.5), it follows from considerations on the jump

matrix and the Sokhotski-Plemelj’s formula. In order to identify the polynomials as monic

orthogonal polynomials with respect to the given measure, one can easily reach the conclusion

by studying the asymptotic behaviour of the matrix Yn.

The interest is on the behaviour of the set of polynomials as their degree goes to infinity

n → +∞ and at the same time also the parameter Λ diverges, say Λ = Tn → ∞, T >

0. As first remark, we can notice that in this regime the singularity at infinity increases,

due to the factor znσ3 . A naive attempt would be to remove the singularity by defining

W (z) := Y (z)e−nσ3 ln z; in this way the asymptotic behaviour at infinity looks more regular

W (z) = I + O (z−1), but on the other hand it does not solve the problem, since the same

singularity issue appears now in the origin.

The problem originates from the logarithm ln z which is unbounded at the origin, even

if it helped remove the singularity at infinity. The ideal approach would therefore be the

following: transforming the original Riemann-Hilbert problem for Y into a new Riemann-

Hilbert problem for W , with

W (z) := Y (z)e−ng(z)σ3 (4.2.6)

where g(z) is a function (still to be determined) such that

• g is analytic everywhere away from the jump contour R;

• g is bounded on any compact set of C;

• g has a logarithmic behaviour at infinity g(z) = ln z +O (z−1).

The g-function satisfying conditions above can be written as

g(z) =

∫
R

ln(z − η)dμ(η) (4.2.7)

where μ is a suitable continuous measure supported on some subsets of R.
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The new Riemann-Hilbert problem is then the following

W+(z) = W−(z)

[
en(g+−g−) e−n(TV−g−−g+−)

0 e−n(g+−g−)

]
z ∈ R (4.2.8)

W (z) = I +O
(
1

z

)
z →∞. (4.2.9)

where we require also the following constraints:

• there exists a constant � (Robin’s constant) such that

ϕ(z) := TV (z)−� (g−(z) + g+(z)− �) ≥ 0, z ∈ R (4.2.10)

so that the off-diagonal entry of the jump is also bounded;

• the jumps are purely imaginary, g+(z)− g−(z) ∈ iR when z ∈ R, so that the diagonal

entries of the jump are oscillatory but not growing;

• 1
i
(g+(z)− g−(z)) is decreasing on R.

In a sense, the reduction of the given Riemann-Hilbert problem Y to an explicitly solvable

one W depends on the existence of a particular measure dμ that defines the g-function. The

conditions above on g turn out to be equivalent to a maximization problem for logarithmic

potentials under external field depending on the potential V (x) over positive measures with

an upper constraint. This is related to the so-called Lax-Levermore variational problem

[79]. We refer to [18], [67] and [93] for a detailed discussion about this topic. As conclusion

remark, we point out that a g-function, provided it exists, may be either explicitly defined

(as in [22]) or only implicitly defined via the conditions above (as in [23]).

In the case of orthogonal polynomials for example, it can be proved that such measure

dμ exists (therefore, also the g-function) and in general is supported on a collection of finite

intervals (“cuts”). In this setting, we can notice that along the real line, but outside the

intervals, the jump (4.2.8) tends to the identity matrix as n → ∞, since the off-diagonal

term tends to zero.

The Riemann-Hilbert problem can be now solved explicitly and the solving method in-

volve three steps.

• The ”lens”-argument: auxiliary contours are introduced near the pieces of the real line

(one below and one above each cut) and appropriate factorizations of the jumps and

analytic extensions are used. This will simplify the expression of the jump along the

support of dμ, while the new jumps along the “lenses” will be close to the identity in
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the limit n → ∞. In general, we want to identify those contours (provided they exist

and provided that the original contour can be deformed into them) along which the

jump matrix is asymptotically close to the identity.

• Dealing with singularities creating local parametrices near them. In our case the growth

of the entries of the jump matrix is not bounded in near the endpoints of the intervals:

thus, one introduces a new contour, homeomorphic to a small circle, centered at each

of the endpoints and builds an exact solution to the local Riemann-Hilbert problem

inside the circles.

• Small Norm Theorem (see for example [49, Section 5.1.3]): one considers a “model”

Riemann-Hilbert problem, where only the jumps that do not tend to the identity (in

the limit n → ∞) are considered. Such a problem can be solved explicitly and it

approximates the original Riemann-Hilbert problem in the n-limit.

The “small norm theory” will be widely used in the present thesis, in particular in Chapter

7. Therefore, we will now give a detailed description of the results that will be applied later.

We refer to [49, Section 5.1.3] as a standard reference.

Given a collection of oriented contours Σ in the complex plane, denote by |dz| the ar-

clength, assuming for the sake of simplicity each arc to be sufficiently smooth.

Let f ∈ Lp(Σ, |dz|) (1 ≤ p < ∞) be a (possibly matrix-valued) function and define the

following Cauchy boundary operators

C± : Lp(Σ, |dz|)→ Lp(Σ, |dz|) (4.2.11)

f 	→ C± [f ] (s) := lim
z→s±

1

2iπ

∫
Σ

f(λ)|dλ|
λ− z

(4.2.12)

where the notation s± indicates that the limit is taken as z approaches s ∈ Σ from the left

or the right side of the oriented curve, within a nontangential cone.

The Cauchy boundary operators enjoy the following properties.

Theorem 4.5. Let f ∈ Lp(Σ, |dz|), 1 ≤ p <∞, then

• C± [f ] exists almost everywhere for s ∈ Σ;

• the Cauchy operator is bounded ∀ p > 1

‖C± [f ]‖Lp ≤ Cp ‖f‖ (4.2.13)

for some positive constant Cp = Cp(Σ, f);
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• the following formula holds

C± = ±1

2
Id−1

2
PV (4.2.14)

where PV is the Cauchy Principal Value operator

PV [f ] (s) :=
1

iπ
P.V.

∫
Σ

f(w)dw

z − w
:=

1

iπ
lim
ε→0

∫
Σε

f(w)dw

z − w
(4.2.15)

Σε := Σ\ {|z − s| < ε} ; (4.2.16)

in particular,

C+ − C− = Id . (4.2.17)

Remark 4.6. The last point in the above Theorem is just a restatement of the well-known

Sokhotski-Plemelj formulæ(see for example [87]).

Consider the following Riemann-Hilbert problem: given a matrix function J(λ) defined

over the collection of curves Σ, find a matrix E(λ) such that

1. E(λ) is analytic on C\Σ;

2. E(λ) has nontangential boundary values on Σ and they satisfy

E+(λ) = E−(λ)J(λ) λ ∈ Σ (4.2.18)

3. E(λ) is asymptotically equal to the identity matrix in any norm:

‖E(λ)− I‖ = O
(
1

λ

)
(4.2.19)

alternatively

E(λ) = I +O
(
1

λ

)
as λ→∞. (4.2.20)

Suppose that the jump matrix J(λ) is a small perturbation of the identity, then the Small

Norm Theorem will allow to give some pointwise estimates on the solution E(λ).

Theorem 4.7 (Small Norm Theorem). Assume J(λ) = I + δJ(λ) is close to the identity

jump, i.e. the norm

‖δJ(λ)‖L2(Σ)∩L∞(Σ) := max
(
‖δJ(λ)‖L2(Σ) , ‖δJ(λ)‖L∞(Σ)

)
� 1 (4.2.21)
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is small enough, with δJ ∈ Lp(Σ), p = 1, 2,∞. Then, the solution E to the above Riemann-

Hilbert problem exists and it satisfies the following pointwise estimate

‖E(λ)− I‖ ≤ C

dist (λ,Σ)
(4.2.22)

for some constant C = C(‖δJ(λ)‖)→ 0, as ‖δJ(λ)‖L1(Σ)∩L2(Σ) → 0.

Remark 4.8. The condition δJ ∈ L1(Σ) could be weakened. On the other hand, if J(λ) is

analytic, then it is possible to prove a stronger estimate of the form

‖E(λ)− I‖ ≤ C

1 + dist (λ,Σ)
. (4.2.23)

We will give here a sketch of the proof.

Proof. The solution to the Riemann-Hilbert problem (4.2.18)-(4.2.19) can be written as

E(λ) = I +
1

2iπ

∫
Σ

E+(s)− E−(s)
s− λ

ds. (4.2.24)

Indeed, both sides have the same jump and the same asymptotic behaviour at∞, thanks to

the Sokhotski-Plemelj formula. On the other hand, since E+(s)−E−(s) = E−(s)(J(λ)− I) =

E−(s)δJ(λ), we have

E(λ) = I +
1

2iπ

∫
Σ

E−(s)δJ(λ)
s− λ

ds. (4.2.25)

Therefore, it is clear that E is uniquely determined by its boundary value E−. Taking the

limit as λ approaches the curves Σ on the left, we have

E−(λ) = I +
1

2iπ

∫
Σ

E−(s)δJ(λ)
s− λ

ds = I + C− [EδJ ] (λ). (4.2.26)

Thus, solving the Riemann-Hilbert problem (4.2.18)-(4.2.19) is equivalent to solving a

linear inhomogeneous equation for the matrix-valued function f := E− − I ∈ L2(Σ)

f(λ) = C− [(I + f)δJ ] (λ) = C− [δJ ] (λ) + C− [fδJ ] (λ) (4.2.27)

or equivalently

(Id−L)f = v0 (4.2.28)

L := C− [ · δJ ] , v0 := C− [δJ ] (4.2.29)
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The next step is to prove that the operator norm of Id−L is smaller than 1. Indeed, if

this is the case, then the invertibility of the operator Id−L is guaranteed and therefore also

the existence of the solution to the Riemann-Hilbert problem (4.2.18)-(4.2.19) is proved.

Given the operator norm as ‖|L|‖ := sup‖f‖2=1 ‖Lf‖L2 , then performing standard esti-

mates we get

‖|L|‖ < ‖|C−|‖ · ‖δJ‖L∞(Σ) (4.2.30)

which implies that the operator norm is smaller than one if the essential sup of δJ is smaller

than the inverse of the operator norm of C−, which is indeed the case thanks to (4.2.21).

The same conclusion can be said about the norm of the matrix v0

‖v0‖ ≤ ‖|C−|‖ · ‖δJ‖L2(Σ) � 1. (4.2.31)

We are finally able to derive an estimate for the solution E and conclude the proof of the

theorem.

2π |E(λ)− I| ≤
∣∣∣∣∫

Σ

δJ(λ)

s− λ
ds

∣∣∣∣+ ∣∣∣∣∫
Σ

f(s)δJ(λ)

s− λ
ds

∣∣∣∣ ≤ 1

dist(λ,Σ)
(‖δJ‖L1 + ‖δJ‖L2 ‖f‖L2)

(4.2.32)

Using the fact that f = (Id−L)−1v0 = (Id−L)−1C− [δJ ], we can estimate its norm by

‖f‖L2 ≤ 1

1− ‖|L|‖ ‖|C−|‖ · ‖δJ‖L2(Σ) ; (4.2.33)

in conclusion,

2π |E(λ)− I| ≤ 1

dist(λ,Σ)

(
‖δJ‖L1 +

‖|C−|‖ · ‖δJ‖2L2(Σ)

1− ‖|C−|‖ · ‖δJ‖L∞(Σ)

)
. (4.2.34)

In the applications, one usually deals with a Riemann-Hilbert problem where a parameter

k is very large

Γ+(λ, k) = Γ−(λ, k)J(λ, k), λ ∈ Σ, (4.2.35)

Γ(λ, k) = I +O
(
1

λ

)
, λ→∞. (4.2.36)

The idea is to perform a sequences of transformations, which may involve the introduction
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of a g-function, from the original Riemann-Hilbert problem into a final problem

Γ̃+(λ, k) = Γ̃−(λ, k)J̃(λ, k), λ ∈ Σ̃, (4.2.37)

Γ̃(λ, k) = I +O
(
1

λ

)
, λ→∞. (4.2.38)

such that Γ̃ is an explicit and approximate solution to the original problem. Indeed, if the

jumps J and J̃ are such that JJ̃−1 = I+ δJ , where δJ is sufficiently small in the Lp-norms,

p = 1, 2,∞, then one can build the “error” matrix E(λ) := Γ(λ)Γ̃(λ)−1 which satisfies a

Riemann-Hilbert problem with jump matrix Γ̃−(I+δJ (λ))Γ̃−1− , plus the usual normalization

at infinity. The Small Norm Theorem can therefore be applied and the estimate (4.2.23)

gives the order of approximation of Γ̃ with respect to Γ, in the setting k � 1.

The Small Norm Theorem will be the main tool used in Chapter 7 in order to prove

the degeneracy of the tacnode Riemann-Hilbert problem into two Airy Riemann-Hilbert

problems in the scaling limit as the “pressure” parameter σ tends to infinity or as the “time”

parameter τ tends to either plus or minus infinity.
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Chapter 5

Gap probabilities for the Bessel

Process

5.1 Introduction

The Bessel process is a determinantal point process as detailed above in Chapter 2 defined

in terms of a trace-class integral operator acting on L2(R+), with kernel

KB(x, y) =
Jν(
√
x)
√
yJν+1(

√
y)− Jν+1(

√
x)
√
xJν(

√
y)

2(x− y)
(5.1.1)

where Jν are Bessel functions with parameter ν > −1.
The Bessel kernel KB arose originally as the correlation function in the scaling limit of

the Laguerre and Jacobi Unitary Ensembles near the hard edge of their spectrum at zero

([38], [88], [89]) as well as of generalized LUEs and JUEs ([78], [104]).

Both these ensembles consist of complex self-adjoint matrices equipped with a certain

probability measure, invariant under unitary transform. In particular, the LUE consists of

positive self-adjoint complex N ×N random matrices such that the joint probability density

function of the (positive) eigenvalues is given by

ρLagν,N(λ1, . . . , λN) = cν,N

N∏
k=1

λν
ke
−λk

∏
1≤j<k≤N

|λj − λk|2 = det [KN(λi, λj)]
N
i,j=1 , (5.1.2)

where

KN(x, y) :=
N−1∑
k=0

φk(x)φk(y), (5.1.3)

and {φk(x)}∞k=0 is the sequence obtained by orthonormalizing the functions
{
xkx

ν
2 e−

x
2

}
on
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(0,∞), with ν > −1.
The JUE consists of all contractive (i.e. its eigenvalues are smaller than 1 in absolute

value) self-adjoint complex N ×N random matrices with joint probability density function

of the eigenvalues given by

ρJacν,μ,N(λ1, . . . , λN) = cν,μ,N

N∏
k=1

(1− λk)
ν(1 + λk)

μ
∏

1≤j<k≤N
|λj − λk|2

= det [KN(λi, λj)]
N
i,j=1 , (5.1.4)

with −1 < λ1, . . . , λN < 1, where KN is given as in (5.1.3) with functions {φk(x)}∞k=0

obtained by orthonormalizing
{
xk(1− x)

ν
2 (1 + x)

μ
2

}
on (−1, 1), with ν, μ > −1.

In both cases and for finite N , the probability that no eigenvalue lies in a subinterval I

of R+ or [−1, 1], respectively, can be written as a Fredholm determinant

det

(
Id−KN

∣∣∣∣
I

)
= 1 +

∞∑
k=1

(−1)k
k!

∫
Ik
det [KN(xi, xj)]

k
i,j=1 dx1 . . . dxk (5.1.5)

where KN stands for the orthogonal projection onto the subspace of L2(R+) or L
2([−1, 1]),

respectively, spanned by the first N Laguerre or Jacobi functions, respectively, and KN(x, y)

is the corresponding integral kernel of the form (5.1.3).

Let P Lag,ν
N (s) and P Jac,ν,μ

N (s) denote the probabilities that no eigenvalues lie in the interval

[0, s] ⊂ R+ (Laguerre case) or [1− s, 1] ⊂ [−1, 1] (Jacobi case), respectively. We can notice

that these probabilities describe also the behaviour of the eigenvalue that is closest to the

hard edges of the ensembles. With the appropriate scaling these probabilities converge (as

N ↗∞) to the Fredholm determinant of the Bessel kernel:

lim
N→∞

P Lag,ν
N

(
s2

4N

)
= det

(
Id−KB

∣∣∣∣
[0,s]

)
(5.1.6)

lim
N→∞

P Jac,ν,μ
N

(
s2

2N2

)
= det

(
Id−KB

∣∣∣∣
[1−s,1]

)
. (5.1.7)

In fact, the Laguerre and Jacobi kernels converge themselves, after the hard edge rescaling,

to the Bessel kernel KB(x, y). This is also true for certain modified Laguerre and Jacobi

random matrix ensembles.

In this chapter we focus on the study of the gap probabilities of the limit process, i.e.

the Bessel process. In particular, we will be concerned with the Fredholm determinant of

such an operator on a collection of (finite) intervals I :=
⋃N

i=1[a2i−1, a2i], i.e. the quantity
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det

(
Id−KB

∣∣∣∣
I

)
, and the emphasis is on the determinant thought of as function of the

endpoint ai, i = 1, . . . , 2N .

The gap probabilities for the Bessel process were originally studied by Tracy and Widom

in their article [101]; we refer to this paper for a comparison with the differential equations

showed in the present work (in particular, Theorem 5.16 and formula (5.2.47)). We point out

that such equations are not the same as those shown in [101] and they are derived through

a completely different method.

The second part of this chapter will examine the Bessel process in a time-dependent

regime. Consider n times τ1, . . . , τn in a given time interval (0, T ); the so called multi-time

or extended Bessel process (see [72] and [102]) is a determinantal point process with matrix

kernel [KB]ij with entries

[KB]ij (x, y) =

{ ∫ 1

0
euΔJν(

√
xu)Jν(

√
yu) du i ≥ j

− ∫∞
1

euΔJν(
√
xu)Jν(

√
yu) du i < j

(5.1.8)

i, j = 1, . . . , n; with Δ := Δij = τi − τj the time gap between two times and ν > −1.

Remark 5.1. In the case T = τ1 = . . . = τn = 0, we can recover the time-less Bessel kernel

(5.1.1).

As shown by Forrester, Nagao and Honner in [39], the multi-time Bessel process (with its

correspondent kernel) appears as scaling limit of the Extended (multi-time)Laguerre process

at the hard edge of the spectrum.

Although the multi-time Bessel process has been known since a long time, the study of

its gap probabilities has never been performed before and it is addressed in this chapter.

Again, we will focus on the Fredholm determinant of such process on a collection of intervals

I = {I1, . . . , In}, Ij refers to time τj for all j. The result is a set of relations that describes

the Fredholm determinant as a function of the endpoints of the intervals and of the n times.

The Fredholm determinant of the time-less Bessel kernel and, as it will be clear in the

chapter, the Fredholm determinant of its multi-time counterpart will be related to Fredholm

determinants of integrable operators in the sense of Its-Izergin-Korepin-Slavnov ([50], see

Section 3.3). We point out that , while the definition of the Bessel kernel already shows an

IIKS structure, the multi-time Bessel kernel (5.1.8) is not of integrable form. Nevertheless,

it will be possible to reduce its Fredholm determinant to a determinant of an integrable

operator of such form.

The main steps in our study of the gap probabilities for the Bessel process are the

following: we will first find an IIKS integrable operator, acting on L2(Σ), with Σ a suitable
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collection of contours. Through an appropriate Fourier transform, we will prove that such

an operator has the same Fredholm determinant as the Bessel process. We will then set up

a Riemann-Hilbert problem for this integrable operator and connect it to the Jimbo-Miwa-

Ueno τ function.

This strategy will be applied separately to both the single-time and the multi-time Bessel

process. Our approach derives from the one used in [10] and [11] for the Airy and Pearcey

processes in the dynamic and time-less regime respectively.

Whereas the part dedicated to the single-time process is mostly a review of known results

(see [36], [53] and [101]), re-derived using an alternative approach, the results on the multi-

time Bessel are genuinely new and never appeared in the literature before.

The present chapter is organized as follows: in section 5.2 we will deal with the single-time

Bessel process in the general case of several intervals; in the subsection 5.2.3 we will focus on

the process restricted to a single interval [0, a]: we will find a Lax pair and we will be able to

make a connection between the Fredholm determinant and the third Painlevé transcendent.

This provides a different and direct proof of this known connection ([53], [101]); in particular

our approach directly specifies the monodromy data of the associated isomonodromic system

and allows to use the steepest descent method to investigate asymptotic properties, if so

desired. In section 5.3 we will study the gap probabilities for the multi-time Bessel process.

Although the results of section 5.3 strictly include those of section 5.2, we have decided to

separate the two cases for the benefit of a clearer exposition.

5.2 The single-time Bessel process and the Painlevé

Transcendent

5.2.1 Preliminary results

We recall the definition of the Bessel kernel

KB(x, y) =
Jν(
√
x)
√
yJν+1(

√
y)− Jν+1(

√
x)
√
xJν(

√
y)

2(x− y)
; (5.2.1)

writing the Bessel functions as explicit contour integrals, it is possible to show, through some

suitable manipulations and integrations by parts, that the Bessel kernel can be written also

in the following form

KB(x, y) =
(y
x

)ν/2
∫∫

γ×γ̂

ext−
1
4t
−ys+ 1

4s

t− s

(s
t

)ν dt

2πi

ds

2πi
(5.2.2)
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γ̂

0

γ

Figure 5.1: The contours appearing in the definition of the Bessel kernel (5.2.2).

with ν > −1, x, y > 0 and γ a curve that extends to −∞ and winds around the zero

counterclockwise, while the curve γ̂ is simply the transformed curve under the map t→ 1/t;

the logarithmic cut is on R−. The contours are as in Figure 5.1.

We want to study the Fredholm determinant of the Bessel operator; in particular, we will

focus on the following quantity

det

(
Id−KB

∣∣∣∣
I

)
(5.2.3)

where I := [a1, a2] ∪ [a3, a4] ∪ . . . ∪ [a2N−1, a2N ] is a collection of finite intervals (0 ≤ a1 <

. . . < a2N).

Remark 5.2. The Bessel operator is not trace-class on an infinite interval. Thus, it is

meaningless to consider the operator restricted to such interval.

Remark 5.3. Defining Ka := KB(x, y)

∣∣∣∣
[0,a]

, then we have

KB(x, y)

∣∣∣∣
I

:=
2N∑
j=1

(−1)jKaj(x, y). (5.2.4)

Our goal is to set up a Riemann-Hilbert problem associated to the Fredholm determinant

of KB

∣∣∣∣
I

.

Theorem 5.4. The following identity between Fredholm determinants holds

det

(
Id−KB

∣∣∣∣
I

)
= det (Id−B) (5.2.5)
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where B is a trace-class integrable operator acting on L2(γ ∪ γ̂) with kernel

B(s, t) :=
�f(s)T · �g(t)

s− t
(5.2.6a)

�f(s) =
1

2πi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e
a1s
2
− 1

4s s−ν

0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
χγ(s) +

1

2πi

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

e−a1s+
1
4s sν

−e−a2s+ 1
4s sν

...

(−1)2Ne−a2N−1s+
1
4s sν

(−1)2N+1e−a2Ns+ 1
4s sν

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
χγ̂(s) (5.2.6b)

�g(t) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

e
a1t
2

et(a2−
a1
2 )

...

et(a2N−
a1
2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
χγ(t) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0

0
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
χγ̂(t). (5.2.6c)

Remark 5.5. The space L2(γ∪ γ̂) is the space of square integrable functions in the arclength

measure, defined on the curves γ ∪ γ̂.

Proof. We work on a single kernel Kaj and we will later sum them up (as in Remark 5.3),

thanks to the linearity of the operations that we are going to perform.

First of all, we can notice that, if x < 0 or y < 0, KB(x, y) ≡ 0; in particular, if x < 0,

then a simple residue calculation shows that the kernel vanishes. Similar arguments lead to

the same conclusion for y < 0. Then, using Cauchy’s theorem, we can write

Kaj(x, y) =

∫
iR+ε

dξ

2πi
eξ(aj−y)

∫∫
γ̂×γ

ext−
1
4t
−ajs+ 1

4s

(ξ − s) (t− s)

(s
t

)ν dt ds

(2πi)2
=

=

∫
iR+ε

dξ

2πi
e−ξy

∫
iR+ε

dt

2πi
ext

∫
γ̂

ds

2πi

eξaj−
1
4t
−ajs+ 1

4s

(ξ − s)(t− s)

(s
t

)ν

(5.2.7)

where iR + ε (ε > 0) is a translated imaginary axis; thanks to the analyticity of the kernel,

we continuously deformed the curve γ into such translated imaginary axis, in order to make

the Fourier operator defined below more explicit. We also discarded the conjugation term(
y
x

)ν/2
, due to the invariance of the Fredholm determinant under conjugation by a positive

function.
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Defining the following Fourier transform operators:

F : L2(R)→ L2(iR+ ε) F−1 : L2(iR+ ε)→ L2(R)

f(x) 	→ 1√
2πi

∫
R
f(x)eξxdx h(ξ) 	→ 1√

2πi

∫
iR+ε

h(ξ)e−ξxdξ

(5.2.8)

it is straightforward to deduce that

KB

∣∣∣∣
I

= F−1 ◦ KB ◦ F (5.2.9)

with KB =
∑

j(−1)jKaj and ∀ j = 1, . . . , N Kaj is an operator on L2(iR+ ε) with kernel

Kaj(ξ, t) =

∫
γ̂

ds

2πi

eξaj−
1
4t
−ajs+ 1

4s

(ξ − s)(t− s)

(s
t

)ν

.

In order to ensure convergence of the Fourier-transformed Bessel kernel, we conjugate KB

by a suitable function

KB(ξ, t) := e
a1t
2
−a1ξ

2 KB(ξ, t)

=
2N∑
j=1

(−1)j
∫
γ̂

ds

2πi

eξ(aj−
a1
2 )+

a1t
2
− 1

4t
−ajs+ 1

4s

(ξ − s)(t− s)

(s
t

)ν

=:
2N∑
j=1

(−1)jKaj(ξ, t) (5.2.10)

and we continuously deform the translated imaginary axis iR + ε into its original shape γ;

note that aj − a1
2
> 0, ∀ j = 2, . . . , 2N and a1

2
≥ 0.

Lemma 5.6. For each j = 1, . . . , 2N , the operator Kaj with kernel

Kaj(ξ, t) =

∫
γ̂

ds

2πi

eξ(aj−
a1
2 )+

a1t
2
− 1

4t
−ajs+ 1

4s

(ξ − s)(t− s)

(s
t

)ν

(5.2.11)

is trace-class. Moreover, the following decomposition holds Kaj = A ◦ Baj , with

A : L2(γ̂)→ L2(γ) Baj : L
2(γ)→ L2(γ̂)

h(s) 	→ t−νe
a1t
2
− 1

4t

∫
γ̂

h(s)
t−s

ds
2πi

f(t) 	→ sνe−ajs+
1
4s

∫
γ

e
t(aj−a1

2 )
t−s f(t) dt

2πi
.

(5.2.12)

A and Baj are trace-class operators as well.
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Proof. It is easy to verify that A and Baj are Hilbert-Schmidt and that their composition

gives Kaj .

Moreover, we have the following decomposition of kernels. Introducing an additional

contour iR+ δ not intersecting either of γ, γ̂, we have A = P2 ◦ P1 with

P1 : L
2(γ̂)→ L2(iR+ δ) P2 : L

2(iR+ δ)→ L2(γ)

P1[f ](u) =

∫
γ̂

f(s)

u− s

ds

2πi
P2[h](t) =

e
a1t
2
− 1

4t

tν

∫
iR+δ

h(u)

t− u

du

2πi
.

Analogously, Baj = O2,j ◦ O1,j with

O1,j : L
2(γ)→ L2(iR+ δ) O2,j : L

2(iR+ δ)→ L2(γ̂)

O1,j[f ](w) =

∫
γ

et(aj−
a1
2 )f(t)

t− w

dt

2πi
O2,j[h](s) = sνe−ajs+

1
4s

∫
iR+δ

h(w)

w − s

ds

2πi
.

It is straightforward to check that Pi and Oi,j are Hilbert-Schmidt operators, i = 1, 2 and

j = 1, . . . , N . Therefore, A and Baj are trace-class.

Remark 5.7. The kernel A does not depend on the set of parameters {aj}2N2 , but only on

the first endpoint a1.

Before proceeding further, we notice that any operator acting on the Hilbert space H :=

L2(γ ∪ γ̂) � L2(γ) ⊕ L2(γ̂) = H1 ⊕ H2 can be written as a 2 × 2 matrix of operators with

(i, j)-entry given by an operator Hj → Hi.

According to such split and using matrix notation, we can thus write det(Id−KB) as

det

(
IdL2(γ) −

2N∑
j=1

(−1)jA ◦ Baj

)

= det

(
IdL2(γ) ⊗ IdL2(γ̂) −

[
0 A∑2N

j=1(−1)jBaj 0

])
= det(IdL2(γ∪γ̂) − B). (5.2.13)

The first identity comes from multiplying the right hand side on the left by the following

matrix (with determinant equal 1)

IdL2(γ)⊕L2(γ̂) +

[
0 −A
0 0

]
.
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5.2.2 The Riemann-Hilbert problem for the Bessel process.

Thanks to Theorem 5.4 we can relate the computation of the Fredholm determinant of the

Bessel operator to the theory of isomonodromic equations. We start by setting up a suitable

Riemann-Hilbert problem which is naturally related to the Fredholm determinant of the

operator B.

Proposition 5.8. Given the integrable kernel (5.2.6a)-(5.2.6c), the associated Riemann-

Hilbert problem is the following:{
Γ+(λ) = Γ−(λ) (I − J(λ)) λ ∈ Σ := γ ∪ γ̂

Γ(λ) = I +O (
1
λ

)
λ→∞ (5.2.14)

where Γ is a (2N +1)× (2N +1) matrix such that it is analytic on C\Σ, bounded near λ = 0

and satisfies the jump conditions above with

J(λ) :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 eθ1 eθ2 . . . eθ2N

0 0 0 . . . 0
...

...

0 0 0 . . . 0

0 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
χγ(λ) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 0 . . . 0

e−θ1 0 . . . 0

−e−θ2 0 . . . 0
...

...

(−1)2N+1e−θ2N 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
χγ̂(λ) (5.2.15)

θj := ajλ− 1
4λ
− ν lnλ, ∀ j = 1, . . . , 2N , where χγ, χγ̂ are the characteristic functions on the

contour γ and γ̂ respectively.

Proof. It is straightforward to verify that I − J(λ) = I − �f(λ) · �g(λ)T .

Theorem 5.9. The Tracy-Widom distribution of the Bessel process, i.e. the Fredholm deter-

minant det

(
Id−KB

∣∣∣∣
I

)
, is equal to the isomonodromic τ -function related to the Riemann-

Hilbert problem defined in Proposition 5.8. In particular, ∀ j = 1, . . . , 2N

∂aj ln det

(
Id−KB

∣∣∣∣
I

)
=

∫
Σ

Tr
(
Γ−1− (λ)Γ′−(λ)Ξ∂aj

(λ)
) dλ

2πi
(5.2.16a)

Ξ∂(λ) := −∂J(λ) · (I − J(λ))−1 (5.2.16b)

where I = [a1, a2]∪ . . . [a2N−1, a2N ] is a collection of finite intervals and Σ = γ∪ γ̂; we denote

by ′ the derivative with respect to the spectral parameter λ.
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Proof. Referring to at the Theorem 3.14 from Section 3.4, we just need to verify that the

extra term H(I − J(λ)) ≡ 0.

Moreover, we notice that the jump matrix J(λ) can be written as

J(λ,�a) = eT (λ,�a)J0e
−T (λ,�a) (5.2.17)

where J0 is a constant matrix, consisting only on 0 and ±1, and

T (λ,�a) = diag (T0, T1, . . . , TN)

T0 =
1

N + 1

N∑
j=1

θj Tj = T0 − θj. (5.2.18)

Therefore, the matrix Ψ(λ,�a) := Γ(λ,�a)eT (λ,�a) solves a Riemann-Hilbert problem with con-

stant jumps and it is (sectionally) a solution to a polynomial ODE. This guarantees the

identification of the one-form above with the one defined by Jimbo, Miwa and Ueno ([53],

[54], [57]), as explained in Chapter 3.4.

Starting from Theorem 5.9, it it possible to derive more explicit differential identities by

the use of the Jimbo-Miwa-Ueno residue formula adapted to the case at hand.∫
Σ

Tr
(
Γ−1− (λ)Γ′−(λ)Ξ∂aj

(λ)
) dλ

2πi
= − res

λ=∞
Tr

(
Γ−1(λ)Γ′(λ)∂ajT (λ)

)
. (5.2.19)

In conclusion,

Proposition 5.10. For all j = 1, . . . , N , the Fredholm determinant satisfies

∂aj ln det

(
Id−KB

∣∣∣∣
I

)
= −Γ1;j+1,j+1 (5.2.20)

with Γ1;j+1,j+1 the (j + 1, j + 1) component of the residue matrix Γ1 = limλ→∞ λ (I − Γ(λ))

and Γ is the solution to the Riemann-Hilbert problem (5.2.14).

Proof. The proof will follow the same guidelines described in [11, Proposition 3.2]. Given

the definition of T (λ),

∂ajT (λ,�a) = λ

(
1

N + 1
I − Ej+1,j+1

)
(5.2.21)

and plugging into (6.3.17), we have

∂aj ln det

(
Id−KB

∣∣∣∣
I

)
=

TrΓ1

N + 1
− Γ1;j+1,j+1 = −Γ1;j+1,j+1 (5.2.22)
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since det Γ(λ) ≡ 1, thus Tr Γ1 = 0.

5.2.3 The single-interval case for the Bessel process and the Painlevé

III equation

We consider now the case in which the Bessel kernel is restricted to a single finite interval

[0, a].

We will see that from the 2× 2 Bessel Riemann-Hilbert problem we can derive a suitable

Lax pair which matches with the Lax pair of the Painlevé III transcendent, as shown in [36].

The Lax pair described in [36] is slightly different from the one found in our present thesis,

but it can be shown that the two formulations are equivalent.

In order to make the connection with the Painlevé transcendent more explicit, we will

work on a rescaled version of the Bessel kernel, which can be easily derived from our original

definition (5.2.2) through suitable scalings.

By specializing the results of the previous section, we get a (Fourier transformed) Bessel

operator on L2(γ) with the following kernel

KB(ξ, t) =

∫
γ̂

ds

2πi

e
ξx
4
+x

2 (
t
2
− 1

t )−x
2 (s− 1

s)

(ξ − s)(t− s)

(s
t

)ν

(5.2.23)

where x :=
√
a.

It can be easily shown that KB is a trace-class operator, since product of two Hilbert-

Schmidt operators KB = A2 ◦ A1 with kernels

A1(t, s) =
1

2πi

exp
{

tx
4
− x

2

(
s− 1

s

)}
t− s

sν · χγ(t)χγ̂(s) (5.2.24)

A2(s, t) = − 1

2πi

exp
{

x
2

(
s
2
− 1

s

)}
t− s

s−ν · χγ(s)χγ̂(t). (5.2.25)

Proposition 5.11. The operators Aj, j = 1, 2, are trace-class.

Proof. The proof follows the same arguments as the proof of Lemma 5.6.

Theorem 5.12. Consider the interval [0, x], then the following identity holds

det

(
Id−KB

∣∣∣∣
[0,x]

)
= det (Id−B) (5.2.26)
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Figure 5.2: The jump matrices for the Bessel Riemann-Hilbert Problem in the single-time
case.

with B a trace-class integrable operator with kernel defined as follows

B(t, s) =
1

2πi

e
tx
4
−x

2 (s− 1
s)sν · χγ(t)χγ̂(s)− e

x
2 (

s
2
− 1

s)s−ν · χγ(s)χγ̂(t)

t− s

=
�f(t)T · �g(s)

t− s
(5.2.27a)

with

�f(t) =
1

2πi

[
e

tx
4

0

]
χγ(t) +

1

2πi

[
0

1

]
χγ̂(t) (5.2.27b)

�g(s) =

[
e

x
2 (−s+ 1

s)sν

0

]
χγ̂(s) +

[
0

−ex
2 (

s
2
− 1

s)s−ν

]
χγ(s). (5.2.27c)

The associated 2 × 2 Riemann-Hilbert problem has jump matrix M(λ) := I − J(λ) on

Σ := γ ∪ γ̂ with

J(λ) =

[
0 −ex

2 (λ− 1
λ)λ−ν

0 0

]
χγ(λ) +

[
0 0

e
x
2 (−λ+ 1

λ)λν 0

]
χγ̂(λ). (5.2.28)

and the solution Γ to the RHP is bounded near the origin when x = 0. See Figure 5.2 for a

sketch of the jumps.
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It is easy to see that

M(λ) = eT (λ)M0e
−T (λ)

with T (λ) :=
θx
2
σ3, θx :=

x

2

(
λ− 1

λ

)
− ν lnλ (5.2.29)

where M0 is a constant matrix. Thus, the matrix Ψ(λ) := Γ(λ)eTx(λ) solves a Riemann-

Hilbert problem with constant jumps and it is (sectionally) a solution to a polynomial ODE.

Applying again Theorem 5.9 and Jimbo-Miwa-Ueno residue formula, we get

∂x ln det(Id− B) =

∫
Σ

Tr
(
Γ−1− (λ)Γ′−(λ)Ξx(λ)

) dλ

2πi

= − res
λ=∞

Tr
(
Γ−1Γ′∂xT

)
+ res

λ=0
Tr

(
Γ−1Γ′∂xT

)
. (5.2.30)

Proposition 5.13. The Fredholm determinant of the single-interval Bessel operator satisfies

the following identity

∂x ln det (Id−B) = −1

2
Γ1;22 +

1

2
Γ̃1;2,2 (5.2.31)

where Γ1;22 is the (2, 2)-entry of the residue matrix at infinity, while Γ̃1;2,2 is the (2, 2)-entry

of residue matrix at zero.

Proof. As in the proof of Proposition 5.10, we can easily get the result by calculating the

derivative of the conjugation matrix

∂xT (λ) =
1

2

(
λ− 1

λ

)(
1

2
I − E2,2

)
(5.2.32)

and by keeping into account that, since det Γ(λ) ≡ 1, Tr Γ1 = Tr Γ̃1 = 0.

The Lax pair and the Third Painlevé Transcendent

From the asymptotic behaviour at infinity of the matrix Ψ, we can calculate the Lax pair

associated to our Riemann-Hilbert problem.

A := ∂λΨ ·Ψ−1(λ) = A0 +
A−1
λ

+
A−2
λ2

(5.2.33)

B := ∂xΨ ·Ψ−1(λ) = B0 + λB1 +
B−1
λ

(5.2.34)
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with coefficients

A0 =
x

4
σ3

A−1 =
x

4
[Γ1, σ3]− ν

2
σ3

A−2 =
x

4
[Γ2, σ3] +

x

4
[σ3Γ1,Γ1]− ν

2
[Γ1, σ3] +

x

4
σ3 − Γ1

B1 =
1

4
σ3

B0 =
1

4
[Γ1, σ3]

B−1 =
1

4

(
[Γ2, σ3] + [σ3Γ1,Γ1]− σ3 + 4

dΓ1

dx

)
.

(5.2.35)

The form of the coefficients matches with the results in [36, Chapter 5, Section 3, Formulæ

(5.3.32) and (5.3.34)]. In particular, using the same notation as in [36, Chapter 5, Section

3, Formulæ (5.3.7) and (5.3.8)], we have

A0 =

[
x
4

0

0 −x
4

]
, A−1 =

[
−ν

2
Y (x)

V (x) ν
2

]
,

B1 =

[
1
4

0

0 −1
4

]
, B0 =

[
0 Y (x)

x
V (x)
x

0

]
, (5.2.36)

A−2 =

[
x
4
− U(x) −W (x)U(x)
U(x)−x

2

W (x)
−x

4
+ U(x)

]
, B−1 = −1

x
A−2. (5.2.37)

Calculating the compatibility equation, we get the following system of ODEs

dU

dx
= −2 WUV

x
− 2

UY

xW
+

U

x
+

Y

W
(5.2.38a)

dV

dx
= −ν V

x
− U

W
+

x

2W
(5.2.38b)

dW

dx
= 2

VW 2

x
− ν W

x
− 2

Y

x
(5.2.38c)

dY

dx
= −WU +

ν Y

x
(5.2.38d)
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and the constant
Θ0

4
:= −ν

4
+

UY

xW
− WUV

x
− Y

2W
+

νU

x
(5.2.38e)

which can be proven to be the monodromy exponent at 0 and equal to −ν.
Setting now

F (x) :=
Y (x)

W (x)U(x)
(5.2.39)

and substituting in the equations above, we get that F and L satisfy

x
dF

dx
= (4U − x)F 2 + (2ν − 1)F − x (5.2.40)

x
dU

dx
= −4FU2 + 2xUF − (2ν − 1)U. (5.2.41)

Remark 5.14. The latter equation for the function U is a Bernoulli 1st-order ODE with

n = 2.

Remark 5.15 (Behaviour as x → 0+). To inspect the behaviour of the functions U, F as

x→ 0+, consider the matrix

Y (λ, x) := x−
ν
2
σ3Γ(λ, x)x

ν
2
σ3 (5.2.42)

which solves a similar RHP with jumps on contours like in Fig. 5.2 but where the off diagonal

terms are multiplied by a factor x±ν.

For the sake of simplicity we consider only the case ν > 0. Given D a disk containing γ̂

and entirely contained in γ, define the following matrix

Φ(λ, x) :=

⎧⎪⎪⎨⎪⎪⎩
(
I +

C1

λ
+

C2

λ2

)
(I + A(λ, x)σ+) =: Φ∞ λ ∈ C\D

Φ∞

[
I +

(
B(λ, x)− xνJν+1(x)

λ
− xνJν+2(x)

λ2

)
σ−

]
λ ∈ D

(5.2.43)

where

A(λ, x) = x−ν
∫
γ

s−νe
x
2 (s− 1

s)ds

(s− λ)2πi
, B(λ, x) = xν

∫
γ̂

sνe−
x
2 (s− 1

s)ds

(s− λ)2πi
, (5.2.44)

σ± is a 2×2 matrix where the only non-zero entry is the upper (respectively, lower) diagonal

entry equal to 1 and the matrices C1, C2 can be explicitly computed by inspecting the behaviour

of Φ inside the disk. Such matrix has the same jumps on γ and γ̂ as for Y and it displays

an extra jump on the circle ∂D (counterclockwise oriented). The “error” matrix E := Y Φ−1
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has only a jump on ∂D by construction:

E+ = E−
(
Φ−Φ−1+

)
λ ∈ ∂D, E = I +O

(
1

λ

)
λ→∞. (5.2.45)

It is possible to show that the surviving jump on ∂D is a perturbation of the identity of the

order |x|2ν+3. Therefore, thanks to a small norm argument ([49], Chapter 4), the matrix Φ

can be considered as an explicit approximant of the matrix Y (and of the original matrix Γ).

Inspecting its behaviour at ∞, it is possible to recover the functions Y, V, U,W and F := Y
WU

appearing in the Lax pair; in particular,

U(x) = Cνx
2ν+1 +O (

x2ν+2
)
, F (x) =

−2ν
x

+O (1) , (5.2.46)

where Cν is a constant depending on the parameter ν.

For −1 < ν ≤ 0 the argument is similar, but one needs to be more careful with the

asymptotic expansion and the rate of convergence.

Differentiating (5.2.40) and using (5.2.41), we get the following Painlevé III equation:

d2F

dx2
=

1

F

(
dF

dx

)2

− 1

x

dF

dx
+

2

x

(
Θ0F

2 + ν − 1
)
+ F 3 − 1

F
. (5.2.47)

Given the expression of the matrix A, we can find an expression for the residue matrix

Γ1. Focusing on the residue at 0, we can perform similar calculation with the already known

Lax pair (5.2.33)-(5.2.34) and obtain

res
λ=0

Tr
(
Γ−1Γ′∂xT

)
= − res

λ=∞
Tr

(
Γ−1Γ′∂xT

)
=

1

2x

[
−2U2F 2 +

(
xF 2 − 2νF + x

)
U − x2

4

]
. (5.2.48)

In conclusion,

Theorem 5.16. The gap probability of the Bessel process restricted to a single interval

satisfies the following identity

det(Id−B) = exp

{∫ x

0

HIII(s) ds

}
(5.2.49)

where HIII is the Hamiltonian associated to the Painlevé III equation (see [53])

HIII(F, U ; x) =
1

x

[
−2U2F 2 +

(
xF 2 − 2νF + x

)
U − x2

4

]
. (5.2.50)
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Figure 5.3: Numerical computation of the Fredholm determinant det(Id−KBχ[0,a]) as func-
tion of a with different values of the parameter ν. The outcome has been obtained by directly
calculating the Fredholm determinant of the Bessel operator (following the ideas of [14]).

Remark 5.17. The Hamiltonian HIII is singular at 0, but it is integrable in a (right) neigh-

borhood of the origin: HIII ∈ L1(0, ε), ε > 0. Given that ∂ ln τ = HIII and τ is continuous,

this yields τ(0) = det(Id) = 1, as expected.

5.3 The multi-time Bessel process

5.3.1 Preliminary results

The multi-time Bessel process on L2(R+) with times τ1 < . . . < τn is governed by the matrix

operator [KB] := [K̃B] + [HB] with kernels [KB], [K̃B] and [HB]s given as follows

[KB]ij (x, y) :=[K̃B]ij(x, y) + [HB]ij (x, y) (5.3.1a)

[K̃B]ij(x, y) :=
1

(2πi)2

(y
x

) ν
2

∫∫
γ×γ̂j

dt ds

ts

eΔij+xt− 1
4t
−ys+ 1

4s

1
4t
− 1

4s
−Δij

(s
t

)ν

(5.3.1b)

[HB]ij (x, y) :=χτi<τj

1

Δji

(y
x

) ν
2

∫
γ

e
x

4Δji
(t−1)+ y

4Δji
( 1

t
−1)

t−ν−1
dt

2πi
(5.3.1c)

with the same curve γ as in the single-time Bessel kernel (a contour that winds around zero

counterclockwise an extends to −∞) and γ̂j :=
1

γ+4τj
, ∀ i, j = 1, . . . , n, Δij := τi − τj.
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Remark 5.18. The matrix HB;ij is strictly upper triangular.

Remark 5.19. The integral expression (5.3.1b)-(5.3.1c) for the multi-time Bessel kernel is

equivalent to the one given in the introduction (5.1.8) (see [72] and [102]). To prove the

equivalence, one simply needs to write the Bessel functions as contour integrals and perform

some suitable integrations by parts.

As in the single-time case, we are interested in the following quantity

det

(
Id−KB

∣∣∣∣
I

)
(5.3.2)

which is equal to the gap probability of the multi-time Bessel kernel restricted to a collection

of multi-intervals I = {I1, . . . , In},

Ij := [a
(j)
1 , a

(j)
2 ] ∪ . . . ∪ [a

(j)
2kj−1, a

(j)
2kj

], 0 ≤ a
(j)
1 < . . . < a

(j)
2kj

. (5.3.3)

Remark 5.20. The multi-time Bessel operator fails to be trace-class on infinite intervals.

For the sake of clarity, we will focus on the simple case Ij = [0, a(j)], j = 1, . . . , n. The

general case follows the same guidelines described below.

Theorem 5.21. The following identity between Fredholm determinants holds

det

(
Id−KB

∣∣∣∣
I

)
= det (Id−KB) (5.3.4)

where I is defined as in (5.3.3). The operator KB is an integrable operator with a 2n × 2n

matrix kernel of the form

KB(t, ξ) =
f(t)T · g(ξ)

t− ξ
(5.3.5)

acting on the Hilbert space

H := L2

(
γ ∪

n⋃
k=1

γ−k,Cn

)
∼ L2

(
n⋃

k=1

γ−k,Cn

)
⊕ L2(γ,Cn), (5.3.6)

with γ−k := 1
γ
− 4τk.
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The functions f, g are the following 2n× 2n matrices

f(t) =

⎡⎢⎣ diag N (t) 0

0 A(M(t))

0 B(H(t))

⎤⎥⎦ (5.3.7)

g(ξ) =

⎡⎢⎣ 0 diag N (ξ)

C(M(ξ)) 0

0 D(H(ξ))

⎤⎥⎦ (5.3.8)

where diag N is a n × n matrix, A and C are two rows with n entries and B and D are

(n− 1)× n matrices,

diag N (t) := diag

(
−4e−a(1)

t1 χγ(t), . . . ,−4e−
a(n)

tn χγ(t)

)
(5.3.9)

A(M(t)) :=
[
e−

t
4 tν1χγ−1(t), . . . , e

− t
4 tνnχγ−n(t)

]
(5.3.10)

B(H(t)) :=

⎡⎢⎢⎢⎢⎢⎢⎣
−4e−a(2)

t2
tν1
tν2
χγ−1 0

−4e−a(3)

t3
tν1
tν3
χγ−1 −4e−a(3)

t3
tν2
tν3
χγ−2

...
...

. . .

−4e−a(n)

tn
tν1
tνn
χγ−1 −4e−a(n)

tn
tν2
tνn
χγ−2 −4e−a(n)

tn
tνn−1

tνn
χγ−(n−1)

0

⎤⎥⎥⎥⎥⎥⎥⎦ (5.3.11)

diag N (ξ) := diag

(
e

a(1)

ξ1 χγ−1(ξ), . . . , e
a(n)

ξn χγ−n(ξ)

)
(5.3.12)

C(M(ξ) :=
[
e

ξ
4 ξ−ν1 χγ(ξ), . . . , e

ξ
4 ξ−νn χγ(ξ)

]
(5.3.13)

D(H(ξ)) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 e
a(2)

ξ2 χγ−2(ξ)

0 e
a(3)

ξ3 χγ−3(ξ)

0 e
a(4)

ξ4 χγ−4(ξ)
. . .

0 e
a(n)

ξn χγ−n(ξ)

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
(5.3.14)

with ξk := ξ + 4τk, tk := t+ 4τk, for k = 1, . . . , n.

Remark 5.22. The naming of Fredholm determinant in the theorem above needs some clar-
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ification: by “ det ” we denote the determinant defined through the Fredholm expansion

det(Id−K) := 1 +
∞∑
k=1

1

k!

∫
Xk

det[K(xi, xj)]
k
i,j=1dμ(x1) . . . dμ(xk) (5.3.15)

with K an integral operator acting on the Hilbert space L2(X, dμ(x)), with kernel K(x, y).

In our case, the operator [KB]

∣∣∣∣
I
= ([K̃B] + [HB])

∣∣∣∣
I
is actually the sum of a trace-class

operator [K̃B]

∣∣∣∣
I
and a Hilbert-Schmidt operator [HB]

∣∣∣∣
I
whose kernel is diagonal-free, as it

will be clear along the proof.

Thus, to be precise, we have the following chain of identities

“ det ”

(
Id−KB

∣∣∣∣
I

)
= “det ”

(
Id−K̃B

∣∣∣∣
I
−HB

∣∣∣∣
I

)
= eTr K̃B det2

(
Id−K̃B

∣∣∣∣
I
−HB

∣∣∣∣
I

)
(5.3.16)

where det2 denotes the regularized Carleman determinant (see [95] for a detailed description

of the theory).

Proof. Thanks to the invariance of the Fredholm determinant under kernel conjugation, we

can discard the term
(
y
x

)ν/2
in our further calculations.

We will work on the entry (i, j) of the kernel. We can notice that for x < 0 or y < 0 the

kernel is identically zero, KB(x, y) ≡ 0, as in the single-time case. Then, applying Cauchy’s

theorem and after some suitable calculations, we have

K̃B;ij(x, y)

∣∣∣∣
[0,a(j)]

=

∫
iR+ε

dξ

2πi

eξ(a
(j)−y)

ξ − s

∫∫
γ×γ̂j

dt ds

(2πi)2ts

eΔ+xt− 1
4t
−a(j)s+ 1

4s

1
4t
− 1

4s
−Δ

(s
t

)ν

=

∫
iR+ε

dξ

2πi
e−ξy

∫
iR+ε

dt

2πi
ext

∫
γ̂j

ds

2πi

eΔ+ξa(j)− 1
4t
−a(j)s+ 1

4s

(ξ − s)
(

1
4t
− 1

4s
−Δ

) (s
t

)ν 1

ts

=

∫
iR+ε

dξ

2πi
e−ξy

∫
iR+ε

dt

2πi
ext

∫
γ

ds

2πi

4e
τi+ξa(j)− 1

4t
− a(j)

s+4τj
+ s

4(
1
ξ
− 4τj − s

) (
1
t
− 4τi − s

) ( 1

(s+ 4τj)t

)ν
1

tξ
(5.3.17)

where we deformed γ into a translated imaginary axis iR+ε (ε > 0) in order to make Fourier

transform operator more explicit; the last equality follows from the change of variable on s:

s→ 1/(s+4τj) (thus the contour γ̂j becomes similar to γ and can be continuously deformed

into that).

67



On the other hand

HB;ij(x, y)

∣∣∣∣
[0,a(j)]

=
−1
Δji

∫
iR+ε

dξ

2πi

eξ(a
(j)−y)

ξ − 1
4Δji

(
1− 1

t

) ∫
γ

e
x

4Δji
(t−1)− a(j)

4Δji
(1− 1

t )t−ν−1
dt

2πi

=
−1
Δji

∫
iR+ε

dξ

2πi
e−ξy

∫
iR+ε

e
ξa(j)+ x

4Δji
(t−1)− a(j)

4Δji
(1− 1

t )

ξ − 1
4Δji

(
1− 1

t

) t−ν−1
dt

2πi

= −4
∫
iR+ε

dξ

2πi
e−ξy

∫
iR+ε

dt

2πi
ext

e
a(j)

(
ξ− t

4Δjit+1

)

tξ
(
4Δji +

1
t
− 1

ξ

)(4Δjit+ 1)−ν . (5.3.18)

It is easily recognizable the conjugation with a Fourier-like operator as in (6.3.7), so that(
KB

∣∣∣∣
I

)
ij

= F−1 ◦ (Bij + χi<jHij) ◦ F (5.3.19)

with

Bij(t, ξ) =

∫
γ

ds

2πi

4e
τi+ξa(j)− 1

4t
− a(j)

s+4τj
+ s

4(
1
ξ
− 4τj − s

) (
1
t
− 4τi − s

) ( 1

(s+ 4τj)t

)ν
1

tξ
(5.3.20)

Hij(t, ξ) := −4 e
a(j)

(
ξ− t

4Δjit+1

)

4τj − 4τi +
1
t
− 1

ξ

(4Δjit+ 1)−ν
1

ξt
. (5.3.21)

Now we will perform a change of variables on the Fourier-transformed kernel Bij+χi<jHij:

ξj :=
1
ξ
− 4τj and ηi :=

1
t
− 4τi. This will lead to the following expression for the (Fourier-

transformed) multi-time Bessel kernel

KB;ij = Bij(η, ξ) + χτi<τjHij(η, ξ) =

4

∫
γ

dt

2πi

e
a(j)

ξ+4τj
− η

4
− a(j)

t+4τj
+ t

4

(ξ − t) (η − t)

(
η + 4τi
t+ 4τj

)ν

+ χτi<τj · 4
e

a(j)

ξ+4τj
− a(j)

η+4τj

ξ − η

(
η + 4τj
η + 4τi

)−ν
(5.3.22)

with ξ ∈ 1
γ
− 4τj =: γ−j and η ∈ 1

γ
− 4τi =: γ−i, ∀ i, j = 1, . . . , n. Such operator is acting on

the Hilbert space L2 (
⋃n

k=1 γ−k,C
n) ∼⊕n

k=1 L
2 (γ−k,Cn).

Lemma 5.23. The operator B is trace-class and the operator H is Hilbert-Schmidt. More-
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over, the following decomposition holds KB =M◦N +H, where

M : L2(γ,Cn)→ L2 (
⋃n

k=1 γ−k,C
n) , N : L2 (

⋃n
k=1 γ−k,C

n)→ L2(γ,Cn)

H : L2 (
⋃n

k=1 γ−k,C
n)→ L2 (

⋃n
k=1 γ−k,C

n)

(5.3.23)

with entries

Mij(t, η) :=
1

2πi

e−
η
4
+ t

4

η − t

(
ηi
tj

)ν

· χγ(t) · χγ−i
(η) (5.3.24a)

Nij(ξ, t; a
(j)) = 4δij · e

a(j)
(

1
ξj
− 1

tj

)

ξ − t
· χγ−j

(ξ) · χγ(t) (5.3.24b)

Hij(ξ, η) = χτi<τj · 4
e
a(j)

(
1
ξj
− 1

ηj

)

ξ − η

(
ηj
ηi

)−ν
· χγ−i

(η) · χγ−j
(ξ) (5.3.24c)

ζk := ζ + 4τk (ζ = ξ, t, η) and γ−k := 1
γ
− 4τk, ∀ k = 1, . . . , n.

Proof. All the kernels are of the general form H(z, w) with z and w on disjoint supports,

that we indicate now temporarily by S1, S2. It is then simple to see that in each instance∫
S1

∫
S2
|H(z, w)|2|dz||dw| < +∞ and hence each operator is Hilbert-Schmidt. Then B is

trace class because it is the composition of two HS operators.

Now consider the Hilbert space

H := L2

(
γ ∪

n⋃
k=1

1

γ
− 4τk,C

n

)
∼ L2

(
n⋃

k=1

1

γ
− 4τk,C

n

)
⊗ L2(γ,Cn), (5.3.25)

and the matrix operator KB : H → H defined as

KB =

[
0 N
M H

]
(5.3.26)

due to the splitting of the space H into its two main addenda.

For now, we denote by “ det ” the determinant defined by the Fredholm expansion (6.4.6);

then, “ det ”(Id − KB) = det2 (Id − KB), since its kernel is diagonal-free. Moreover, we
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introduce another Hilbert-Schmidt operator

K
′
B =

[
0 −N
0 0

]

which is only Hilbert-Schmidt, but nevertheless its Carleman determinant (det2) is well

defined and det2 (I −K
′
B) ≡ 1.

Collecting all the results we have seen so far, we perform the following chain of equalities

“ det ”

(
IdL2(R+) −KB

∣∣∣∣
I

)
= det2

(
Id−KB

∣∣∣∣
I

)
e−Tr(K̃)

= det2

(
IdL2(

⋃n
k=1 γ−k) −KB

)
e−Tr(B) = det2 (IdH −KB) det2 (IdH −K

′
B)

= det2 (IdH −KB) = “ det ”(IdH −KB). (5.3.27)

The first equality follows from the fact that KB − K̃B is diagonal-free; the second equality

follows from invariance of the determinant under Fourier transform; the first identity on

the last line is just an application of the following result: given KB, K
′
B Hilbert-Schmidt

operators, then

det2 (Id−KB) det2 (Id−K
′
B) = det2 (Id−KB −K

′
B +KBK

′
B)e

Tr(KBK′B).

It is finally just a matter of computation to show that KB is an integrable operator of

the form (5.3.5)-(5.3.14).

Example 2 × 2. For the sake of clarity, let us consider a simple example of the multi-

time Bessel process with two times τ1, τ2, restricted to the finite intervals I1 := [0, a] and

I2 := [0, b]:

KB(x, y)

∣∣∣∣
I1,I2

=

(y
x

) ν
2

⎧⎨⎩
⎡⎣ 4χ[0,a](y)

∫
γ×γ̂j

dt ds
(2πi)2

ext−
1
4t−ys+ 1

4s

t−s
(
s
t

)ν χ[0,b](y)

(2πi)2

∫
γ×γ̂j

dt ds
ts

eΔ12+xt− 1
4t−ys+ 1

4s
1
4t
− 1

4s
−Δ12

(
s
t

)ν
χ[0,a](y)

(2πi)2

∫
γ×γ̂j

dt ds
ts

eΔ21+xt− 1
4t−ys+ 1

4s
1
4t
− 1

4s
−Δ21

(
s
t

)ν
4χ[0,b](y)

∫
γ×γ̂j

dt ds
(2πi)2

ext−
1
4t−ys+ 1

4s

t−s
(
s
t

)ν
⎤⎦

+

[
0 −χ[0,b](y)

1
Δ12

∫
γ
e

x
4Δ12

(1−t)+ y
4Δ12

(1− 1
t )t−ν−1 dt

2πi

0 0

]}
. (5.3.28)

Then, the integral operator KB : H → H on the space H := L2 (γ ∪ γ−1 ∪ γ−2,C2) has
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the following expression

KB =

[
0 N
M H

]
=⎡⎢⎢⎢⎢⎣

0 0 −4e a
ξ1χγ−1e

− a
t1χγ 0

0 0 0 −4e b
ξ2χγ−2e

− b
t2χγ

e
ξ
4 ξ−ν1 χγe

− t
4 tν1χγ−1 e

ξ
4 ξ−ν2 χγe

− t
4 tν1χγ−1 0 −4e b

ξ2χγ−2e
− b

t2
tν1
tν2
χγ−1

e
ξ
4 ξ−ν1 χγe

− t
4 tν2χγ−2 e

ξ
4 ξ−ν2 χγe

− t
4 tν2χγ−2 0 0

⎤⎥⎥⎥⎥⎦
(5.3.29)

and the equality between Fredholm determinants holds

det

(
IdL2(R+,C2) −KB

∣∣∣∣
I1,I2

)
= det (IdH −KB) . (5.3.30)

5.3.2 The Riemann-Hilbert problem for the multi-time Bessel pro-

cess.

As explained in the introduction, we can relate the computation of the Fredholm determinant

of the matrix Bessel operator to the theory of isomonodromic equations, through a suitable

Riemann-Hilbert problem.

Proposition 5.24. Given the integrable kernel (5.3.5)-(5.3.14), the associated Riemann-

Hilbert problem is the following:

Γ+(λ) = Γ−(λ) (I − 2πiJB(λ)) λ ∈ Σ (5.3.31a)

Γ(λ) = I +O
(
1

λ

)
λ→∞ (5.3.31b)

where Γ is a 2n × 2n matrix Γ such that it is analytic on the complex plane except at

Σ := γ ∪⋃n
k=1

1
γ
− 4τk; the jump matrix JB(λ) := f(λ) · g(λ)T has the expression

JB(λ) :=

⎡⎢⎣ 0 �1 0

�2 0 �3

�4 0 �5

⎤⎥⎦
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�1 :=
[−4eθ1χγ, . . . ,−4eθnχγ

]T
�2 :=

[
e−θ1χγ−1 , . . . , e

−θnχγ−n

]
�3 :=

[
e−θ2χγ−2 , . . . , e

−θnχγ−n

]

�4 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

−4e−θ1+θ2χγ−1 0

−4e−θ1+θ3χγ−1 −4e−θ2+θ3χγ−2 0

−4e−θ1+θ4χγ−1 −4e−θ2+θ4χγ−2 −4e−θ3+θ4χγ−3 0
...

. . .

−4e−θ1+θnχγ−1 . . . −4e−θn−1+θnχγ−(n−1)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎦

�5 :=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−4e−θ2+θ3χγ−2

−4e−θ2+θ4χγ−2 −4e−θ3+θ4χγ−3

...
...

−4e−θ2+θnχγ−2 −4e−θn−1+θnχγn−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

θi :=
λ

4
− ai

λi

− ν lnλi, λi = λ+ 4τi. (5.3.32)

We recall that we are considering the simple case I =
⊔

j Ij with Ij := [0, a(j)], ∀ j =

1, . . . , n.

Applying again the results stated in [9] and [11], we can claim the following.

Theorem 5.25. Given n times τ1 < τ2 < . . . < τn and given the multi-interval I =

{I1, . . . , In}, the Tracy-Widom distribution of the multi-time Bessel operator, i.e. the Fred-

holm determinant det

(
Id− [KB]

∣∣∣∣
I

)
, is equal to the isomonodromic τ -function related to

the above Riemann-Hilbert problem.

In particular, we have

∂ ln det

(
Id− [KB]

∣∣∣∣
I

)
=

∫
Σ

Tr
(
Γ−1− (λ)Γ′−(λ)Ξ∂(λ)

) dλ

2πi
(5.3.33a)

Ξ∂(λ) = −2πi ∂JB (I + 2πiJB) (5.3.33b)

the ′ notation means differentiation with respect to λ, while with ∂ we denote any of the
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derivatives with respect to times ∂τk or endpoints ∂a(k) (k = 1, . . . , n).

Proof. Keeping into account Theorem 3.14 from Section 3.4, it is enough to verify that

H(I − JB(λ)) = 0.

Example 2× 2. In the simple 2-times case, the jump matrix is

JB(λ) = f(λ) · g(λ)T =⎡⎢⎢⎢⎢⎢⎣
0 0 −4eλ

4
− a

λ1 λ−ν1 χγ 0

0 0 −4eλ
4
− b

λ2 λ−ν2 χγ 0

e
−λ

4
+ a

λ1 λν
1χγ−1 e

−λ
4
+ b

λ2 λν
2χγ−2 0 e

−λ
4
+ b

λ2 λν
2χγ−2

−4e a
λ1
− b

λ2

(
λ1

λ2

)ν

χγ−1 0 0 0

⎤⎥⎥⎥⎥⎥⎦ . (5.3.34)

Thanks to Theorem 6.25, it is possible to derive some more explicit differential identities

by using the Jimbo-Miwa-Ueno residue formula (see [9]).

First we notice that the jump matrix is equivalent up to conjugation with a constant

matrix J0:

JB(λ) = eTB(λ)J0
Be
−TB(λ) (5.3.35)

with

TB(λ) := diag
[
θ1 − κ

2n
, . . . , θn − κ

2n
, 1− κ

2n
, θ2 − κ

2n
, . . . , θn − κ

2n

]
κ := θ1 + 2

n∑
k=2

θk. (5.3.36)

Therefore, the matrix ΨB(λ) = Γ(λ)eTB(λ) solves a Riemann-Hilbert problem with con-

stant jumps and it is (sectionally) a solution to a polynomial ODE.

Theorem 5.26. The quantity (5.3.33a) can be computed explicitly∫
Σ

Tr
(
Γ−1− (λ)Γ′−(λ)Ξ∂(λ)

) dλ

2πi
= − res

λ=∞
Tr

(
Γ−1Γ′∂TB

)
+

+
n∑

i=1

res
λ=−4τi

Tr
(
Γ−1Γ′∂TB

)
. (5.3.37)

More specifically, regarding the derivative with respect to the endpoints a(i) (i = 1, . . . , n),
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we have

res
λ=−4τ1

Tr
(
Γ−1Γ′∂a(1)TB

)
=

(
1

2n
− 1

)(
Γ−10 Γ1

)
(1,1)

(5.3.38a)

res
λ=−4τi

Tr
(
Γ−1Γ′∂a(i)TB

)
=

(
1

n
− 1

)[(
Γ−10 Γ1

)
(i,i)

+
(
Γ−10 Γ1

)
(i+n,i+n)

]
(5.3.38b)

and, regarding the derivative with respect to the times τi (i = 1, . . . , n), we have

res
λ=−4τ1

Tr
(
Γ−1Γ′∂τ1TB

)
= 4ν

(
1

2n
− 1

)(
Γ−10 Γ1

)
(1.1)

+

+4a(1)
(
1− 1

2n

)(−Γ−10 Γ1Γ
−1
0 Γ1 + 2Γ−10 Γ2

)
(1,1)

(5.3.39a)

res
λ=−4τi

Tr
(
Γ−1Γ′∂τiTB

)
= 4ν

(
1

n
− 1

)[(
Γ−10 Γ1

)
(i.i)

+
(
Γ−10 Γ1

)
(i+n,i+n)

]
+

+4a(i)
(
1− 1

n

)[(−Γ−10 Γ1Γ
−1
0 Γ1 + 2Γ−10 Γ2

)
(i,i)

+

+
(−Γ−10 Γ1Γ

−1
0 Γ1 + 2Γ−10 Γ2

)
(i+n,i+n)

]
(5.3.39b)

where the Γi’s are coefficients of the asymptotic expansion of the matrix Γ near ∞ and −4τj.
We recall that each asymptotic expansion (the Γi’s) is different in a neighborhood of each

point −4τj and it’s different from the one near ∞.

The residue at infinity does not give any contribution in either case.

Proof. We calculate the derivatives of the conjugation factor

∂a(1)TB(λ) = diag
[
∂a(1)

(
θ1 − κ

2n

)
, 0, . . . , 0

]
= diag

[
1

λ1

(
1

2n
− 1

)
, 0, . . . , 0

]
=

1

λ1

(
1

2n
− 1

)
· E(1,1) (5.3.40)

∂a(i)TB(λ) = diag
[
0, . . . , ∂a(i)

(
θi − κ

2n

)
, . . . , ∂a(i)

(
θi − κ

2n

)
, . . . , 0

]
=

1

λi

(
1

n
− 1

)
· E(i,i), (i+n,i+n) (5.3.41)
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∂τ1TB(λ) = diag
[
∂τ1

(
θ1 − κ

2n

)
, 0, . . . , 0

]
= diag

[(
4a(1)

λ2
1

− 4ν

λ1

)(
1− 1

2n

)
, 0, . . . , 0

]
=

(
4a(1)

λ2
1

− 4ν

λ1

)(
1− 1

2n

)
· E(1,1) (5.3.42)

∂τiTB(λ) = diag
[
0, . . . , ∂τi

(
θi − κ

2n

)
, . . . , ∂τi

(
θi − κ

2n

)
, . . . , 0

]
=

(
4a(i)

λ2
i

− 4ν

λi

)(
1− 1

n

)
· E(i,i), (i+n,i+n) (5.3.43)

where E(i,i) (i+n,i+n) is the zero matrix with only two non-zero entries (which are 1’s) in the

(i, i) and (i+ n, i+ n) positions.

Then, recalling the (formal) asymptotic expansion of the matrix Γ near ∞ and −4τi for
all i (see [107] for a detailed discussion on the topic), the results follow from straightforward

calculations.

5.4 Conclusions and further developments

In this chapter we discussed the gap probabilities for the Bessel process restricted to a

collection of intervals in both the timeless and dynamic regime.

As far as the timeless Bessel process is concerned, we were able to express its Fredholm

determinant as a Jimbo-Miwa-Ueno τ -function and give a quite explicit formulation in terms

of the solution of a suitable Riemann-Hilbert problem which defines the τ function.

It is known that the gap probability restricted to a finite interval [0, x], x > 0, can be

interpreted as the distribution of the smallest eigenvalue of the Laguerre ensemble near the

hard edge (when x = 0). In this work we showed that such quantity is linked in a non linear

way to the Painlevé III equation as already shown in [101]. On the other hand, the method

employed in this work allows to not only identify the Painlevé equation, but also to identify

the monodromy data of the associated isomonodromic system.

The study of the gap probabilities for the multi-time process has never been performed

before and the connection with the τ -function allows the formulation of differential identities

which might lead to differential equations in the spirit of [5] and [106], if one desires to do

so. In particular, a first step in this direction could be the recovery of the system of PDEs

showed in [102] for the multi-time Bessel process, using the Lax pair formalism.
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Chapter 6

Gap probabilities for the Generalized

Bessel Process

6.1 Introduction

In this chapter we deal with a relatively new determinantal point process which arises in

the setting of mutually avoiding random paths, called Generalized Bessel process. As in

the previous Chapter, we will be interested in studying certain “gap” probabilities of the

possible configurations of the system and we will connect them with suitable Riemann-Hilbert

problems (RHP, see Chapter 3.3).

As discussed in Chapter 2, gap probabilities of determinantal processes are equal to

Fredholm determinants of suitable integral operators. Therefore, the main goal of the present

Chapter will be the analysis of such Fredholm determinants and, possibly, their calculation

in a quite explicit or more manageable form. These gap probabilities may be also seen as

instances of “Tracy-Widom” distribution ([100], [101]), in the sense of quantities describing

a “last particle” behaviour, as in the Bessel case (Chapter 5), thus establishing a connection

with the theory of Random Matrices and equations of Painlevé type. Our results on the

Generalized Bessel process fit in the same setting; in particular, we will be able to set a

connection between gap probabilities and a member of some Painlevé hierarchy, using the

same method performed in Chapter 5 (see [10], [11]), through the identification of the Lax

pair. However, the explicit ODE is still object of investigation.

The Generalized Bessel process is a determinantal point process defined in terms of a

trace-class integral operator acting on L2(R+), with kernel

KGEN(x, y) =

∫
Γ

ds

2πi

∫
Σ

dt

2πi

exs+
τ
s
+ 1

2s2
−yt− τ

t
− 1

2t2

t− s

(s
t

)ν

(6.1.1)
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Figure 6.1: The original contours for the Generalized Bessel kernel defined in [76].

with ν > −1, τ ∈ R; the logarithmic cut is on R−. The curve Γ and Σ are described in

Figure 6.1.

The Generalized Bessel kernel was first introduced as a critical kernel by Kuijlaars et al.

in [76] and [77]. Let consider a model of n non-intersecting squared Bessel processes and let

study the scaling limit as the number of paths goes to infinity. We recall that if
{
�X(t)

}
t≥0

is a Brownian motion in R
d, then the diffusion process

R(t) = ‖X(t)‖2 :=
√

X1(t)2 + . . .+Xn(t)2 t ≥ 0 (6.1.2)

is called Bessel process with parameter ν = d
2
− 1, while R2(t) is the squared Bessel process

usually denoted by BESQd (see e.g. [69, Ch. 7], [74]). As stated in the Chapter 1, these

are an important family of diffusion processes which have applications in finance and other

areas. The Bessel process R(t) for d = 1 reduces to the Brownian motion reflected at the

origin, while for d = 3 it is connected with the Brownian motion absorbed at the origin ([70],

[71]).

In particular, we want to consider a system of n particles performing BESQd conditioned

never to collide with each other and conditioned to start at time t = 0 at the same positive

value x = κ > 0 and end at 0. Of particular interest here is the interaction of the non-

intersecting paths with the hard edge at 0. Due to the nature of the squared Bessel process,

the paths starting at a positive value remain positive, but they are conditioned to end at

time t = 1 at x = 0.

The positions of the paths at any given time t ∈ (0, 1) are a determinantal point process
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Figure 6.2: Numerical simulation of 100 non-intersecting Squared Bessel Paths with starting
point κ = 1.

with correlation kernel built out of the transition probability density of the squared Bessel

process. In [76], it was proven that, after appropriate rescaling in the limit as n→ +∞, the

paths fill out a region in the tx-plane as in Figure 6.2: the paths stay initially away from the

axis x = 0, but at a certain critical time t∗, which depends only on the position of the starting

point κ, the smallest paths hit the hard edge and remain close to it. In particular, the domain

of the non-intersecting paths is a simply connected region in the tx-plane, bounded by two

curves which are the loci of the zeros of a certain algebraic equation.

As the number of paths tends to infinity, the local scaling limits of the correlation kernel

are the usual universal kernels appearing in Random Matrix Theory: the sine kernel appears

in the bulk, the Airy kernel at the soft edges, i.e. the upper boundary for all t ∈ (0, 1) and

the lower boundary of the limiting domain for t < t∗, while for t > t∗, the Bessel kernel

appears at the hard edge x = 0, see [76, Theorems 2.7-2.9]. It is interesting to notice that

neither the boundary of the domain filled by the scaled paths, nor the behaviour in the bulk

or at the soft edge depends on the parameter ν related to the dimension d of the BESQd.

This dependency appears only in the interaction with the hard edge at x = 0. A possible

interpretation may be that ν is a measure for the interaction with the hard edge. It does

not influence the global behavior as n→ +∞, but only the local behaviour near 0 (for more

details we refer to [76]).
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At the critical time t = t∗, there is a transition between the soft and the hard edges and

the dynamics at that point is described by the new kernel (6.1.1), which we call Generalized

Bessel kernel.

In this chapter we will focus on the gap probability of the Generalized Bessel process on

a collection of intervals I := [a1, a2] ∪ . . . ∪ [a2N−1, a2N ] and the emphasis is again on the

probabilities thought of as functions of the endpoints {aj}:

P (no points in I) = det

(
Id−KGEN

∣∣∣∣
I

)
(6.1.3)

where, with abuse of notation, we called KGEN the integral operator with kernel (6.1.1).

As seen in the introductory chapters, Section 2.2, it is possible to introduce a more general

concept of gap probability, introducing a time parameter in the point process. Thus, the

point process becomes a dynamical system and one can study the behaviour of the points

evolving with time.

Given a collection of n consecutive times {τ1, . . . , τn}, within the time interval [0, 1], and

subsets Ik ⊂ R, k = 1, . . . , n, we are interested again in the probability that at time τk no

points lie in Ik (for all k = 1, . . . , n), i.e. the gap probability in a multi-time setting:

P (no points in Ik at time τk, ∀ k) = det

(
Id− [K]GEN

∣∣∣∣
I

)
(6.1.4)

where the operator [K]GEN is the multi-time “counter-part” of the Generalized Bessel op-

erator KGEN (6.1.1), with matrix kernel [K]GEN
i,j=1,...,n of dimension n × n, restricted to

the sets I = I1 � . . . � In. The kernel of the Generalized Bessel operator is defined as

[K]GEN
ij = Hij + χi<jPij (i, j = 1, . . . , n) with

Hij(x, y) := 4

∫∫
γ̂×γ

ds dt

(2πi)2
e−xs+yt+ 1

2(τ− 1
s
+4Δji)

2− 1
2(τ− 1

t )
2

(t− s− 4Δjits)

(s
t

)ν

(6.1.5a)

Pij(x, y) = − 1

Δji

∫
γ

e
x

4Δji
( 1
w
−1)+ y

4Δji
(w−1)

w−ν
dw

(2πi)w
(6.1.5b)

where the curve γ is the same one as in the definition of the Bessel process (Chapter 5) and

it appears also in an equivalent definition of the single-time Generalized Bessel kernel (see

formula (6.3.1a)); γ̂ := 1
γ
, Δji := τj − τi (i, j = 1, . . . , n).

The formulation of the multi-time Generalized Bessel kernel is a completely new result

and its derivation will be addressed in the next section. An equivalent formulation has been

autonomously derived by S. Delvaux and B. Vető ([105]) and it is shown here.
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In order to accomplish our study of gap probabilities, we will show again that the gap

probabilities of the Generalized Bessel operator (single-time and multi-time) can be expressed

in terms of Fredholm determinants of a suitable integral operator K (matrix-valued in the

multi-time case) in the sense of Its-Izergin-Korepin-Slavnov ([50], see Section 3.3). Moreover,

through the study of the corresponding Riemann-Hilbert problem, it will be possible to link

the gap probabilities to the τ -function, as we did with the Bessel process.

The main steps will be the following: we will find an IIKS integrable operator, which will

have the same Fredholm determinant as the Generalized Bessel process, up to conjugation

with a Fourier-like operator. We will then set up a Riemann-Hilbert problem for such

integrable operator and connect it to the Jimbo-Miwa-Ueno τ function. For the sake of

clearness, we will apply this strategy to the single-time and the multi-time Generalized

Bessel process separately.

We point out that although the single time operator can be formulated in an IIKS form

(see the alternative definition in [77, Formula 1.33]), the corresponding multi-time process

is not of this type and its restriction to a collection of intervals is crucial to find a new IIKS

operator with equivalent Fredholm determinant.

As an example of possible applications we will describe how to obtain a system of isomon-

odromic Lax equations for the single-time process. Moreover, having a Riemann-Hilbert

formulation for such Fredholm determinants would allow the study of asymptotics of Gener-

alized Bessel gap probabilities and their connection with Airy and Bessel gap probabilities,

using steepest descent methods, along the lines of [11].

Remark 6.1. We preferred to refer to the process under consideration as “Generalized Bessel

process” because of several analogies with the Bessel process (see Chapter 5) appearing in our

study. As will be clear, the contours setting is similar to the one for the Bessel kernel; many

of the calculations performed in Chapter 5 for the Bessel kernel are here reproduced with

very few adjustments. Moreover, as it will be clear in Section 6.3, gap probabilities of the

Generalized Bessel operator are related to a Lax pair that shows similar properties to the

one associated with the Painlevé III transcendent, which is known to be related to the gap

probabilities for the Bessel process (see Chapter 5 and [101]). On the other hand, such a

Lax pair has a higher order pole at zero and this fact suggests that its compatibility equations

might lead to an ODE belonging to some Painlevé hierarchy.

The chapter is organized as follows: in Section 6.3 we will deal with the single-time

Generalized Bessel operator restricted to a generic collection of intervals; in the subsection

6.3.2 we will focus on the single-time Generalized Bessel process restricted to a single interval

and we will find a corresponding Lax pair In the following Section 6.4 we will study the gap

probabilities for the multi-time Bessel process.
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In the coming Section 6.2, we show how we found the multi-time Generalized Bessel

kernel and we compare it with the one found by Delvaux and Vető ([105]). We prove that

these two kernels are equivalent up to a transposition of the operator and a translation of

the parameter τ .

6.2 Building the multi-time Generalized Bessel kernel

The starting point of this investigation is the known single-time kernel derived by Kuijlaars

et al. ([77])

KKMW
ν (x, y; τ) =

∫∫
γ×γ̂

dt ds

(2πi)2
e−xs−

τ
s
+ 1

2s2
+yt+ τ

t
− 1

2t2

s− t

(s
t

)ν

(6.2.1)

where the curve γ is an unbounded curve that extends from −∞ to zero and then back to

−∞, encircling the origin in a counterclockwise way, and γ̂ := 1
γ
; the logarithmic cut is on

R−, as shown in Figure 6.3.

The diffusion kernel related to the Squared Bessel Paths is

p(x, y,Δ) :=
(y
x

) ν
2 1

Δ
e−

x+y
4Δ Iν

(√
xy

2Δ

)
(6.2.2)

where Δ > 0 represents the gap between two given times τi and τj and Iν is the modified

Bessel function of first kind (the same diffusion kernel appears in the definition of the multi-

time Bessel kernel; see Chapter 5).

The extended multi-time kernel is given by

[K] = H − P (6.2.3)

where in particular P is a strictly upper-triangular matrix with (i, j)-entry Pij := χi<jp(x, y,Δij)

(Δij := |τi − τj| > 0). This is essentially the derivation in [33] applied to case at hand.

Theorem 6.2. The multi-time Generalized Bessel operator on L2(R+) with times τ1 <

. . . < τn is defined through a matrix kernel with the following entries [K]GEN
ij := Hij+χi<jPij

(i, j = 1, . . . , n)

Hij(x, y) := 4

∫∫
γ̂×γ

ds dt

(2πi)2
e−xs+yt+ 1

2(τ− 1
s
+4Δji)

2− 1
2(τ− 1

t )
2

(t− s− 4Δjits)

(s
t

)ν

(6.2.4a)

Pij(x, y) = − 1

Δji

∫
γ

e
x

4Δji
( 1
w
−1)+ y

4Δji
(w−1)

w−ν
dw

(2πi)w
(6.2.4b)
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the curve γ is the same one as in the single-time Generalized Bessel kernel (a contour that

winds around zero counterclockwise an extends to −∞; Figure 6.3) and γ̂ := 1
γ
; Δji := τj−τi.

The proof is based on the verification that the definition of the kernel above satisfies the

theorem due to Eynard and Mehta on multi-time kernels ([33]).

First of all, we define a convolution operation (see [33, formula (3.2)]).

Definition 6.3. Given two functions f, g with suitable regularity, we define the convolution

f ∗ g as

(f ∗ g)(ξ, η) =
∫

f(ξ, ζ)g(ζ, η) dζ. (6.2.5)

Recalling formulæ (3.12)-(3.13) from [33], we will verify the following relations between

the diffusion kernel P and the kernel H:

Hij ∗ Pjk =

{
Hik j < k

0 j ≥ k
(6.2.6a)

Pij ∗Hjk =

{
Hik i < j

0 i ≥ j.
(6.2.6b)

Proof. We set Δ := |τi − τj| > 0. Regarding the upper diagonal terms (i < j)

Hij(x, y) =

∫ ∞

0

Pij(x, z)Hjj(z, y) dz =∫ ∞

0

dz

Δ

∫
γ

dw

2πiw
e

x
4Δ(

1
w
−1)+ z

4Δ
(w−1)w−ν

∫∫
γ×γ̂

dt ds

(2πi)2
e−zs+yt+ 1

2(τ− 1
s)

2− 1
2(τ− 1

t )
2

t− s

(s
t

)ν

.

Integrating in z and taking calculating a residue, we have

1

Δ

∫∫
γ×γ̂u

dt du

(2πi)2
e−xu+yt+ 1

2(τ+4Δ− 1
u)

2− 1
2(τ− 1

t )
2

(u− t+ 4Δut)

(u
t

)ν

.

As for the lower diagonal term, we need to verify that∫ ∞

0

Pij(x, z)Hji(z, y) dz = Hii(x, y) j > i (6.2.7)

with

Hji(x, y) =
4

(2πi)2

∫∫
γ̂×γ

du dt

ut

e−xu+yt+ 1
2(τ− 1

u
−4Δij)

2− 1
2(τ− 1

t )
2(

1
u
− 1

t
+ 4Δij

) (u
t

)ν

. (6.2.8)
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Again ,we set Δ := |τi − τj| > 0.

∫ ∞

0

4 dz

Δ

∫
γ

dw

(2πi)w
e

x
4Δ(

1
w
−1)+ z

4Δ
(w−1)w−ν

∫∫
γ̂×γ

du dt

(2πi)2
e−zu+yt+ 1

2(τ− 1
u
−4Δ)2− 1

2(τ− 1
t )

2

(u− t− 4Δtu)

(u
t

)ν

we integrate in z and calculate a residue to get

4

Δ

∫∫
γ̂×γ

dv dt

(2πi)2
e−xv+yt+ 1

2(τ− 1
v )

2− 1
2(τ− 1

t )
2

(t− v)

(v
t

)ν

.

Independently from the present work and almost simultaneously, Vető and Delvaux in-

troduced another version of the multi-time Generalized Bessel operator, called Hard-edge

Pearcey process ([105]).

The kernel of the Hard-edge Pearcey reads Lν := W − P with entries

Wij(x, y, σ) :=(y
x

)ν
∫
Γ−τi

dη

2πi

∫
iR+δ

dξ

2πi

e
− 1

2
(η−σ)2+ x

η+τi
− 1

2
(ξ−σ)2− y

ξ+τj

(η − ξ)(η + τi)(ξ + τj)

(
η + τi
ξ + τj

)ν

(6.2.9)

and P the usual transition density. Γ−τi is a clockwise oriented closed loop which intersects

the real line at a point to the right of −τi, and also at −τi itself, where it has a cusp at

angle π; δ > 0 is chosen such that the contour iR + δ passes to the right of the singularity

at −t and to the right of the contour Γ−τi . The logarithmic branch is cut along the negative

half-line.

Proposition 6.4. The Hard-edge Pearcey operator is the transpose of the Generalized Bessel

operator (6.2.4a)-(6.2.4b) defined above. More precisely,

Lν(x, y; σ) =
(y
x

)ν

[K]GEN(y, x; τi + σ). (6.2.10)

Proof. The results come from straightforward changes of variables.

Corollary 6.5. In the single-time case (τi = τj), both the Generalized Bessel kernel and

the Hard-edge Pearcey kernel coincide with the single-time kernel defined in [77], up to a

transposition:

Lν(x, y; σ)|Δij=0 =
(y
x

)ν

KKMW
ν (y, x; τi + σ) =

(y
x

)ν

[K]GEN(y, x; τi + σ)
∣∣
Δij=0

. (6.2.11)
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Figure 6.3: The curves appearing in the definition of the Generalized Bessel kernel.

Remark 6.6. Since the Fredholm determinant is invariant under transposition, we prefer

to work on the version given by Vető and Delvaux for the multi-time Generalized Bessel

operator, because of more straightforward calculations which reminds more closely the ones

performed for the Bessel process (Chapter 5).

6.3 The Single-time Generalized Bessel

The Generalized Bessel kernel is

KGEN(x, y) =

∫
γ×γ̂

dt ds

(2πi)2
eφτ (y,t)−φτ (x,s)

s− t

(s
t

)ν

(6.3.1a)

φτ (z, t) := zt+
τ

t
− 1

2t2
(6.3.1b)

where τ ∈ R is a fixed parameter, the contour γ̂ is a closed loop in the right half-plane

tangent to the origin and oriented clockwise, while the contour γ is an unbounded loop

oriented counterclockwise and encircling γ̂; the logarithmic cut lies on R− (see Figure 6.3).

Remark 6.7. The curve setting is equivalent to the curve setting appearing in the definition

of the Bessel kernel (Chapter 5). Moreover, the phase appearing in the exponential (6.3.1b)

resembles the Bessel kernel one ψ(z, t) := zt − 1
4t

with an extra term which introduces a

higher singularity at 0.

Our interest is focused on the gap probability of such operator restricted to a collection
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of intervals I, i.e. the quantity

det

(
Id−KGEN

∣∣∣∣
I

)
. (6.3.2)

Remark 6.8. Given a multi-interval I :=
⋃N

k=1[a2k−1, a2k], we define K
GEN
a := KGEN(x, y)

∣∣∣∣
[0,a]

;

then we have

KGEN(x, y)

∣∣∣∣
I

=
2N∑
j=1

(−1)jKGEN
aj

(x, y). (6.3.3)

Remark 6.9. The Generalized Bessel operator is not trace class on an infinite interval.

As mentioned in the above introduction, the first step in our study is to establish a

relation between the Generalized Bessel operator and a suitable IIKS integrable operator

(Section 3.3, [50]).

Theorem 6.10. Given a collection of (disjoint) intervals I :=
⋃N

k=1[a2k−1, a2k], the following

identity between Fredholm determinants holds

det

(
Id−KGEN

∣∣∣∣
I

)
= det

(
Id−KGEN

)
(6.3.4)

where K
GEN is an IIKS integrable operator acting on L2(γ ∪ γ̂) with kernel

K
GEN(t, s) =

�f T (t) · �g(s)
t− s

(6.3.5a)

�f(t) =
1

2πi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

1

0
...
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
χγ̂(t) +

1

2πi

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

e
ta1
2

et(a2−
a1
2 )

...

et(a2N−
a1
2 )

⎤⎥⎥⎥⎥⎥⎥⎥⎦
χγ(t) (6.3.5b)

�g(s) =

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0

−e−a1s− τ
s
+ 1

2s2 sν

e−a2s−
τ
s
+ 1

2s2 sν

...

(−1)2Ne−a2Ns− τ
s
+ 1

2s2 sν

⎤⎥⎥⎥⎥⎥⎥⎥⎦
χγ̂(s) +

⎡⎢⎢⎢⎢⎢⎢⎢⎣

e
sa1
2

+ τ
s
− 1

2s2 s−ν

0
...
...

0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
χγ(s). (6.3.5c)

Proof. Since the preliminary calculations are linear, we will start working on the single term
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KGEN
aj

and we will later sum them up over the j = 1, . . . , 2N , as in formula (6.3.3).

KGEN
aj

:= χ[0,aj ](x)K
GEN(x, y; τ)

=

∫
iR+ε

dξ

2πi
eξ(aj−x)

∫
γ×γ̂

dt ds

(2πi)2
e−ajs−

τ
s
+ 1

2s2
+yt+ τ

t
− 1

2t2

(ξ − s) (s− t)

(s
t

)ν

=

∫
iR+ε

dξ

2πi
e−xξ

∫
iR+ε

dt

2πi
eyt

∫
γ̂

ds

2πi

eξaj+
τ
t
− 1

2t2
−ajs− τ

s
+ 1

2s2

(ξ − s)(s− t)

(s
t

)ν

(6.3.6)

where we continuously deformed the contour γ into a suitably translated imaginary axis

iR+ ε, ε > 0 big enough such that the vertical line lays on the right of the curve γ̂.

Introducing the following Fourier transform operators

F : L2(R)→ L2(iR+ ε) F−1 : L2(iR+ ε)→ L2(R)

f(x) 	→ 1√
2πi

∫
R
f(x)eξxdx h(ξ) 	→ 1√

2πi

∫
iR+ε

h(ξ)e−ξxdξ

(6.3.7)

we can claim that

KGEN = F−1 ◦ KGEN ◦ F , (6.3.8)

KGEN :=
∑

j(−1)jKGEN
aj

being an operator acting on L2(iR+ ε) with kernels

KGEN
aj(ξ, t; τ) =

∫
γ̂

ds

2πi

eξaj+
τ
t
− 1

2t2
−ajs− τ

s
+ 1

2s2

(ξ − s)(s− t)

(s
t

)ν

(6.3.9)

∀ j = 1, . . . , 2N , ξ, t ∈ iR+ ε.

In order to ensure the convergence of the kernel, we conjugate it with the function

f(z) := e
a1z
2

KGEN(ξ, t; τ) := e
a1t
2
−a1ξ

2 KGEN(ξ, t; τ)

=
2N∑
j=1

(−1)j
∫
γ̂

ds

2πi

eξ(aj−
a1
2 )+

ta1
2

+ τ
t
− 1

2t2
−ajs− τ

s
+ 1

2s2

(ξ − s)(s− t)

(s
t

)ν

=:
2N∑
j=1

(−1)jKGEN
aj

(ξ, t; τ). (6.3.10)

Remark 6.11. We recall that Fredholm determinants are invariant under conjugation by

bounded invertible operators.
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We continuously deform the translated imaginary axis iR + ε into its original shape γ;

note that aj − a1
2
> 0, ∀j = 1, . . . , 2N . It can be easily shown that the operator KGEN

aj
is the

composition of two operators for every j = 1, . . . , 2N ; moreover, it is trace-class.

Lemma 6.12. The operators KGEN
aj

are trace-class operators, ∀ j = 1, . . . , 2N , and the

following decomposition holds KGEN
aj

= B1 ◦ Aj,1, with

Aj,1 : L
2(γ)→ L2(γ̂) B1 : L

2(γ̂)→ L2(γ)

h(t) 	→ sνe−ajs−
τ
s
+ 1

2s2
∫
γ

e
t(aj−a1

2 )
t−s h(t) dt

2πi
f(s) 	→ t−νe

ta1
2

+ τ
t
− 1

2τ2
∫
γ̂

f(s)
s−t

ds
2πi

.

(6.3.11)

Aj,1 and B1 are trace-class operators themselves.

Proof. We introduce an additional translated imaginary axis iR+ δ (δ > 0), not intersecting

with γ and γ̂, and we decompose Aj,1 and B1 in the following way: Aj,1 = Oj,2 ◦ Oj,1 and

B1 = P2 ◦ P1 with

Oj,1 : L
2(γ)→ L2(iR+ δ) Oj,2 : L

2(iR+ δ)→ L2(γ̂)

f(ξ) 	→
∫
γ

dξ

2πi
eξ(aj−

a1
2 ) f(ξ)

ξ − w
g(w) 	→ sνe−ajs−

τ
s
+ 1

2s2

∫
iR+δ

dw

2πi

g(w)

w − s

and

P1 : L
2(γ̂)→ L2(iR+ δ) P2 : L

2(iR+ δ)→ L2(γ)

f(s) 	→
∫
γ̂

ds

2πi

f(s)

s− u
g(u) 	→ t−νe

ta1
2

+ τ
t
− 1

2t2

∫
iR+δ

du

2πi

g(u)

u− t
.

All the kernels involved are of the form K(z, w) with z and w on two disjoint curves, say

C1 and C2. It is sufficient to check that
∫∫

C1×C2
|K(z, w)|2|dz||dw| < ∞ to ensure that the

operator belongs to the class of Hilbert-Schmidt operators. This implies that {Aj,1}j, B1

and KGEN
aj

are trace-class (for all j = 1, . . . , 2N), since composition of two HS operators.

Now we recall that any operator acting on a Hilbert space of the type H = H1 ⊕ H2

can be decomposed as a 2 × 2 matrix of operators with (i, j)-entry given by an operator
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Hj → Hi. Thus, we can perform a chain of equalities

det
(
IdL2(γ)−KGEN

)
= det

(
IdL2(γ)−

2N∑
j=1

(−1)jB1 ◦ Aj,1

)

= det

(
IdL2(γ)⊗ IdL2(γ̂)−

[
0 B1∑2N

j=1(−1)jAj,1 0

])
= det

(
IdL2(γ∪γ̂)−KGEN

)
; s (6.3.12)

the second equality follows from the multiplication on the left by the matrix (with determi-

nant equal to 1)

IdL2(γ)⊗L2(γ̂) +

[
0 −B1

0 0

]
and the operator KGEN is an integrable operator with kernel as in the statement of Theorem

6.10.

6.3.1 Riemann-Hilbert problem and τ-function

We can proceed now with building a Riemann-Hilbert problem associated to the integrable

kernel we just found in Theorem 6.10. This will allow us to find some explicit identities for

its Fredholm determinant.

Definition 6.13. Given the integrable kernel (6.3.5a)-(6.3.5c), the correspondent Riemann-

Hilbert problem is the following: finding an (2N + 1) × (2N + 1) matrix Γ such that it is

analytic on C\Ξ (Ξ := γ ∪ γ̂) and{
Γ+(λ) = Γ−(λ)M(λ) λ ∈ Ξ

Γ(λ) = I +O(1/λ) λ→∞ (6.3.13)

with jump matrix M(λ) := I − J(λ),

J(λ) := 2πi�f(λ) · �gT (λ)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎣

0 −eθa1χγ̂ eθa2χγ̂ . . . (−1)2Neθa2Nχγ̂

e−θa1χγ 0 0 . . . 0

e−θa2χγ 0 . . .
...

...

e−θa2Nχγ 0 0 . . . 0

⎤⎥⎥⎥⎥⎥⎥⎥⎦
(6.3.14a)

θaj := −ajλ−
τ

λ
+

1

2λ2
+ ν lnλ ∀ j = 1, . . . , 2N. (6.3.14b)
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It is easy to see that the jump matrix is conjugate to a matrix with (piece-wise) constant

entries

M(λ) = eT (λ)M0e
−T (λ), T (λ,�a) = diag (T0, T1, . . . , TN) , (6.3.15)

T0 =
1

N + 1

2N∑
j=1

θaj , Tj = T0 − θaj (6.3.16)

with �a the collection of all endpoints {aj}.
Thus, considering the matrix Ψ(λ,�a) := Γ(λ,�a)eT (λ,�a), Ψ satisfies a RH-problem with

constant jumps, thus it’s (sectionally) a solution to a polynomial ODE.

Referring to the results stated in Section 3.4 (see also [9] and [11]) and adapted to the

case at hand, we can claim that

Theorem 6.14. Given a collection of intervals I =
⋃

k[a2k−1, a2k], the Fredholm determi-

nant of the Generalized Bessel process det

(
Id−KGEN

∣∣∣∣
I

)
is equal to the isomonodromic

τ -function related to the RHP in Definition 6.13.

Moreover, for every parameter ρ, on which the Generalized Bessel operator may depend,

∂ρ ln det

(
Id−KGEN

∣∣∣∣
I

)
=

∫
Ξ

Tr
(
Γ−1− (λ)Γ′−(λ)Θ∂ρ(λ)

) dλ

2πi
(6.3.17)

Θ∂ρ(λ) := ∂ρM(λ)M−1(λ) (6.3.18)

with Ξ = γ∪ γ̂. Thanks to the Jimbo-Miwa-Ueno residue formula (see [11]), ∀ j = 1, . . . , 2N

the Fredholm determinant satisfies

∂aj ln det

(
Id−KGEN

∣∣∣∣
I

)
= − resλ=∞Tr

(
Γ−1Γ′∂ajT

)
= Γ1;j+1,j+1 (6.3.19)

i.e. the (j + 1, j + 1) component of the residue matrix Γ1 = limλ→∞ λ (I − Γ(λ)) at infinity.

As far as the parameter τ is concerned, the following result holds

∂τ ln det

(
Id−KGEN

∣∣∣∣
I

)
= resλ=0 Tr

(
Γ−1Γ′∂τT

)
= −

(
Γ̃−10 Γ̃1

)
1,1

(6.3.20)

where Γ̃0 and Γ̃1 are coefficients appearing in the asymptotic expansion of the matrix Γ in a

neighbourhood of zero.

Proof. First of all, recalling Theorem 3.14 (Chapter 3), it is easy to verify that H(M) ≡ 0.

Subsequently, we can calculate (6.3.19) and (6.3.20). The phases θaj are linear in aj, exactly
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as in the Bessel kernel case (Chapter 5).

∂ajT (λ,�a) = λ

(
1

2N + 1
I − Ej+1,j+1

)
(6.3.21)

Then, we plug this expression into (6.3.19)

resλ=∞Tr
(
Γ−1Γ′∂ajT

)
=

TrΓ1

2N + 1
− Γ1;j+1,j+1. (6.3.22)

Regarding the residue at zero, we recall the asymptotic expansion of Γ ∼ Γ̃0 + λΓ̃1 + . . .

near zero (see [107]) and we calculate

∂τT = −1

λ

[
E1,1 − 1

2N + 1
I

]
(6.3.23)

thus

resλ=0 Tr
(
Γ−1Γ′∂τT

)
=

Tr
(
Γ̃−10 Γ̃1

)
2N + 1

−
(
Γ̃−10 Γ̃1

)
1,1

. (6.3.24)

The result follows from TrΓ1 = Tr
(
Γ̃−10 Γ̃1

)
= 0, since det Γ(λ) ≡ 1.

6.3.2 The single-interval case

In case we consider a single interval I = [0, a], we are able to perform a deeper analysis on

the gap probability of the Generalized Bessel operator and link it to an explicit Lax pair.

We will see that the Lax pair {A,U} will recall the Painlevé III Lax pair very closely (see

Section 5.2.3 and [36, Chapter 5, Section 3]), except for the presence of an extra term for the

spectral matrix A. Such term will introduce a higher order Poincaré rank at λ = 0 as it will

be clear in the following calculations. Moreover, thanks to the presence of the parameter τ

other than the endpoint a, we can actually calculate an extra matrix, complementary to the

Lax pair.

First of all, we reformulate Theorems 6.10 and 6.14, focusing on our present case.

Theorem 6.15. Given I = [0, a], the following equality between Fredholm determinants

holds

det

(
IL2(γ) −KGEN

∣∣∣∣
[0,a]

)
= det

(
IL2(γ∪γ̂) −K

GEN
)

(6.3.25)
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with K
GEN an IIKS integrable operator with kernel

K
GEN
ν,τ (t, s) =

�fT (t) · �g(s)
t− s

(6.3.26a)

�f(t) =
1

2πi

[
e

ta
2

0

]
χγ(t) +

1

2πi

[
0

1

]
χγ̂(t) (6.3.26b)

�g(s) =

[
0

s−νe
sa
2
+ τ

s
− 1

2s2

]
χγ(s) +

[
sνe−sa−

τ
s
+ 1

2s2

0

]
χγ̂(s). (6.3.26c)

The associated Riemann-Hilbert problem reads as follows:{
Γ+(λ) = Γ−(λ)M(λ) λ ∈ Ξ := γ̂ ∪ γ

Γ(λ) = I +O(1/λ) λ→∞

with Γ a 2 × 2 matrix, analytic on analytic on the complex plane except on the collection

of curves Ξ, along which the above jump condition is satisfied with jump matrix M(λ) :=

I − J(λ)

M(λ) =

[
1 −eλa+ τ

λ
− 1

2λ2
−ν lnλχγ(λ)

−e−λa− τ
λ
+ 1

2λ2
+ν lnλχγ̂(λ) 1

]
= eTa(λ)M0e

−Ta(λ). (6.3.27)

Thus the jump matrix M is equivalent to a matrix with constant entries, via the conjugation

eTa(λ), Ta(λ) =
1
2
θaσ3, where θa := −λa− τ

λ
+ 1

2λ2+ν lnλ and σ3 is the third Pauli matrix. This

allows us to define the matrix Ψ(λ) := Γ(λ)eTa(λ) which solves a Riemann-Hilbert problem

with constant jumps and is (sectionally) a solution to a polynomial ODE.

Applying Theorem 6.14, we get

Theorem 6.16.

∂ρ ln det

(
Id−KGEN

∣∣∣∣
[0,a]

)
=

∫
Ξ

Tr
(
Γ−1− (λ)Γ′−(λ)Θ∂ρ(λ)

) dλ

2πi
(6.3.28a)

Θ∂(λ) := ∂M(λ)M−1(λ), Ξ := γ ∪ γ̂ (6.3.28b)

for every parameter ρ on which the operator KGEN depends.
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In particular, thanks to the Jimbo-Miwa-Ueno residue formula, we have

∂a ln det

(
Id−KGEN

∣∣∣∣
[0,a]

)
= − resλ=∞ Tr

(
Γ−1Γ′∂aTa

)
= Γ1;2,2 (6.3.29a)

∂τ ln det

(
Id−KGEN

∣∣∣∣
[0,a]

)
= resλ=0 Tr

(
Γ−1Γ′∂τTa

)
=
(
Γ̃−10 Γ̃1

)
2,2

(6.3.29b)

with Γ1;2,2 the (2, 2)-entry of the residue matrix Γ1 at ∞, while the Γ̃j’s appear in the asymp-

totic expansion of Γ near zero.

We can now calculate the Lax “triplet” associated to the Riemann-Hilbert problem above:

A := ∂λΨ ·Ψ−1 = A0 +
A−1
λ

+
A−2
λ2

+
A−3
λ3

(6.3.30a)

U := ∂aΨ ·Ψ−1 = U0 + λU1 (6.3.30b)

V := ∂τΨ ·Ψ−1 = V = V0 +
V−1
λ

(6.3.30c)

with coefficients

A0 =
a

2
σ3, A−1 = −ν

2
σ3 +

a

2
[Γ1, σ3]

A−2 = −a

2
[Γ1, σ3Γ1] +

a

2
[Γ2, σ3]− ν

2
[Γ1, σ3]− τ

2
σ3 − Γ1

A−3 = Γ2
1 − 2Γ2 +

a

2
[σ3Γ2,Γ1] +

a

2
[Γ1, σ3Γ

2
1] +

a

2
[σ3Γ1,Γ2] +

a

2
[Γ3, σ3]

+
ν

2
σ3Γ2 +

ν

2
[Γ1, σ3Γ1] +

τ

2
σ3Γ1 +

1

2
σ3

U0 =
1

2
[Γ1, σ3], U1 =

1

2
σ3

V0 = 0, V−1 =
1

2
σ3

where σ3 = diag {1,−1} is the third Pauli matrix.

We point out that λ = 0 is an irregular point of Poincaré rank 2. The behaviour at zero

shows a higher order rank with respect to the Lax pair for the Painlevé III transcendent

(associated to the Bessel operator; Section 5.2.3 and [36, Chapter 5, Section 3]) where the

point λ = 0 was of rank 1. Moreover, the matrix U is the same as the one appearing in the

Painlevé III Lax pair (in the non-rescaled case, see Chapter 5.2).

Remark 6.17. The expression of the Lax pair A and U suggests that their compatibility

equation, together with some constraint induced by the additional matrix V , will lead to a
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higher order ODE belonging to some Painlevé hierarchy. Nevertheless, the reduction of the

system of 1st order ODEs (originated from the compatibility equation of the Lax pair) to a

unique higher order ODE, which can describe the gap probability of the Generalized Bessel

process, is not straightforward and it is still under investigation.

6.4 The Multi-time Generalized Bessel

The multi-time Generalized Bessel operator on L2(R+) with times τ1 < . . . < τn is defined

through a n× n matrix kernel with entries [K]GEN
ij := Hij + χi<jPij

Hij(x, y) = −4
(y
x

)ν
∫
γ×γ̂

dt ds

(2πi)2
e−

1
2(τ− 1

t )
2
+xt+ 1

2(τ− 1
s
+Δji)

2−ys

(s− t+Δjits)

(s
t

)ν

(6.4.1a)

Pij(x, y) =
(y
x

) ν
2 1

Δji

e
− x+y

4Δji Iν

(√
xy

2Δji

)
= −

(y
x

)ν 1

Δji

∫
γ

e
x

4Δji
(t−1)+ y

4Δji
( 1

t
−1)

t−ν−1
dt

2πi
(6.4.1b)

the curve γ is the same one as in the single-time Generalized Bessel kernel (6.3.1a) (a contour

that winds around zero counterclockwise an extends to −∞) and γ̂ := 1
γ
; Δji := τj − τi and

Iν is the modified Bessel function of first kind.

Remark 6.18. The matrix with entries χi<jPij (i, j = 1, . . . , n) is strictly upper triangular,

by construction.

Remark 6.19. The above definition of the multi-time kernel is the one given by Delvaux

and Vető ([105]). We preferred to use this one because the study of the gap probability with

the above expression involves less complicated calculations than with the equivalent version

given in Section 6.2.

As in the single-time case, we are again interested in the gap probability of the operator

restricted to a collection intervals Ij at each time τj (∀ j), i.e.

det

(
IdL2(R+) − [K]GEN

∣∣∣∣
I

)
(6.4.2)

where I = I1 � . . . � In is a collection of Borel sets of the form

Ij := [a
(j)
1 , a

(j)
2 ] ∪ . . . ∪ [a

(j)
2kj−1, a

(j)
2kj

] ∀ j = 1, . . . , n.

Remark 6.20. The multi-time Bessel operator fails to be trace-class on infinite intervals.
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For the sake of clarity, we will focus on the simple case Ij = [0, a(j)], ∀ j. The general

case follows the same guidelines described below; the only difficulties are mostly technical,

due to heavy notation, and not theoretical.

As in the single-time case, we start by establishing a link between the multi-time Gen-

eralized Bessel operator and a suitable IIKS operator, which we will examine deeper in the

next subsection.

Theorem 6.21. The following identity between Fredholm determinants holds

det

(
Id−[K]GEN

∣∣∣∣
I

)
= det

(
Id−[K]GEN

)
(6.4.3)

with where I = I1 � . . . � In is a collection of disjoint intervals Ij := [0, a(j)], ∀ j = 1, . . . , n.

The operator [K]GEN is an integrable operator acting on the Hilbert space

H := L2

(
γ ∪

n⋃
k=1

γ−k,Cn

)
∼ L2

(
n⋃

k=1

γ−k,Cn

)
⊕ L2(γ,Cn), (6.4.4)

with γ−k := 1
γ
− 4τk, mutually disjoint.

Its kernel is a 2n× 2n matrix of the form

[K]GEN(v, ξ) =
f(v)T · g(ξ)

v − ξ
(6.4.5a)

f(v)T =
1

2πi

[
diag N (v) 0 0

0 diag M(v) A(v)

]
(6.4.5b)

g(ξ) =

⎡⎢⎣ 0 diag N (ξ)

M(ξ) 0

0 B(ξ)

⎤⎥⎦ (6.4.5c)
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where f, g are N × 2n matrices, with N = 2n+ (n− 1) = 3n− 1.

diag N (v) := diag

[
−4e−a(1)

v1 χγ, . . . ,−4e−
a(n)

vn χγ

]
diag N (ξ) := diag

[
e

a(1)

ξ1 χγ−1 , . . . , e
−a(n)

ξn χγ−n

]
diag M(v) := diag

[
e−

(v1,τ )2

2 vν1χγ−1 , . . . , e
− (vn,τ )2

2 vνnχγ−n

]

M(ξ) :=

⎡⎢⎢⎢⎣
e

(ξ1,τ )2

2 ξ−ν1 χγ . . . e
(ξ1,τ )2

2 ξ−νn χγ

...
...

e
(ξn,τ )2

2 ξ−ν1 χγ . . . e
(ξn,τ )2

2 ξ−νn χγ

⎤⎥⎥⎥⎦

A(v) =⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4e−a(2)

v2
vν1
vν2
χγ−1 −4e−a(3)

v3
vν1
vν3
χγ−1 −4e−a(4)

v4
vν1
vν4
χγ−1 . . . −4e−a(n)

vn
vν1
vνn
χγ−1

0 −4e−a(3)

v3
vν2
vν3
χγ−2 −4e−a(4)

v4
vν2
vν4
χγ−2 . . . −4e−a(n)

vn
vν2
vνn
χγ−2

0 −4e−a(4)

v4
vν3
vν4
χγ−3 . . .

...

0 −4e−a(n)

vn
vνn−1

vνn
χγ−(n−1)

0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

B(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 e
a(2)

ξ2 χγ−2

0 e
a(3)

ξ3 χγ−3

0 e
a(4)

ξ4 χγ−4

. . .

0 e
a(n)

ξn χγ−n

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
ζk := ζ + 4τk, ζk,τ := ζ + 4τk − τ (ζ = v, ξ, k = 1, . . . , n).

Remark 6.22. By Fredholm determinant “ det ” we denote the determinant defined through

the usual series expansion

det(Id−K) := 1 +
∞∑
k=1

1

k!

∫
Xk

det[K(xi, xj)]
k
i,j=1dμ(x1) . . . dμ(xk) (6.4.6)

with K an integral operator acting on the Hilbert space L2(X, dμ(x)) and kernel K(x, y).

95



In the case at hand, we will see that the operator [K]GEN

∣∣∣∣
I
= (H +PΔ)

∣∣∣∣
I
is the sum of a

trace-class operator (H

∣∣∣∣
I
) plus a Hilbert-Schmidt operator (PΔ

∣∣∣∣
I
) with diagonal-free kernel.

Therefore the naming of Fredholm determinant refers to the following expression:

“ det ”

(
Id−[K]GEN

∣∣∣∣
I

)
= eTrH det2

(
Id−[K]GEN

∣∣∣∣
I

)
(6.4.7)

where det2 denotes the regularized Carleman determinant (see [95]).

Proof. Thanks to the invariance of the Fredholm determinant under kernel conjugation, we

can discard the term
(
y
x

)ν
in formulæ (6.4.1a)-(6.4.1b) for our further calculations.

We will work on the entry (i, j) of the kernel. We can notice that for x < 0 or y < 0 the

kernel is identically zero, [K]GEN(x, y) ≡ 0. Then, applying Cauchy’s theorem, we have

Hij(x, y)

∣∣∣∣
[0,a(j)]

= 4

∫
iR+ε

dξ

2πi

eξ(a
(j)−y)

ξ − s

∫
γ̂×γ

ds dt

(2πi)2
e−a

(j)s+xt+ 1
2(τ− 1

s
+4Δji)

2− 1
2(τ− 1

t )
2(

1
s
− 1

t
− 4Δji

) (s
t

)ν 1

st

= −4
∫
iR+ε

dξ

2πi
e−yξ

∫
iR+ε

dt

2πi
ext

∫
γ

dv

2πi

e
a(j)ξ− 1

2(τ− 1
t )

2− a(j)

v+4τj
+ 1

2
(τ−4τi−v)2(

1
ξ
− 4τj − v

) (
1
t
− 4τi − v

) (
1

(v + 4τj)t

)ν
1

ξt

(6.4.8)

where we deformed γ into a translated imaginary axis iR+ε (ε > 0) in order to make Fourier

operator defined below more explicit; the last equality follows from the change of variable on

s = 1/(v + 4τj), thus the contour γ̂ becomes similar to γ and can be continuously deformed

into it.

On the other hand, as i < j

Pij(x, y)

∣∣∣∣
[0,a(j)]

=
−1
Δji

∫
iR+ε

dξ

2πi
e−ξy

∫
γ

e
ξa(j)+ x

4Δji
(t−1)− a(j)

4Δji
(1− 1

t )

ξ − 1
4Δji

(
1− 1

t

) t−ν−1
dt

2πi

= −4
∫
iR+ε

dξ

2πi
e−ξy

∫
iR+ε

dt

2πi
ext

e
a(j)

(
ξ− t

4Δjit+1

)

tξ
(
4Δji +

1
t
− 1

ξ

)(4Δjit+ 1)−ν . (6.4.9)

It is easily recognizable the conjugation with a Fourier-like operator as in (6.3.7), so that(
[K]GEN

∣∣∣∣
I

)
ij

= F−1 ◦ (Hij + χi<jPij) ◦ F (6.4.10)
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with

Hij(ξ, t) := −4
∫
γ

dv

2πi

e
a(j)ξ− 1

2(τ− 1
t )

2− a(j)

v+4τj
+ 1

2
(τ−4τi−v)2(

1
ξ
− 4τj − v

) (
1
t
− 4τi − v

) (
1

(v + 4τj)t

)ν
1

ξt
(6.4.11a)

Pij(ξ, t) := −4 e
a(j)

(
ξ− t

4Δjit+1

)

4τj − 4τi +
1
t
− 1

ξ

(4Δjit+ 1)−ν
1

ξt
. (6.4.11b)

Now we can perform the following change of variables on the Fourier-transformed kernel

ξj :=
1

ξ
− 4τj, ηi :=

1

t
− 4τi (6.4.12)

so that the kernel will have the final expression

KGEN
ij (ξ, η) = Hij + χτi<τjPij =

−4
∫
γ

dv

2πi

e
a(j)

ξ+4τj
− 1

2
(τ−4τi−η)2− a(j)

v+4τj
+ 1

2
(τ−4τi−v)2

(ξ − v) (η − v)

(
η + 4τi
v + 4τj

)ν

+4χτi<τj

e
a(j)

ξ+4τj
− a(j)

η+4τj

ξ − η

(
4Δji

η + 4τi
+ 1

)−ν
(6.4.13)

with ξ ∈ 1
γ
− 4τj =: γ−j and η ∈ 1

γ
− 4τi =: γ−i. The obtained (Fourier-transformed)

Generalized Bessel operator is an operator acting on L2 (
⋃n

k=1 γ−k,C
n) ∼⊕n

k=1 L
2 (γ−k,Cn).

Lemma 6.23. The following decomposition holds KGEN = M ◦ N + P, with M, N , P
Hilbert-Schmidt operators

M : L2 (γ,Cn)→ L2

(
n⋃

k=1

γ−k,Cn

)
(6.4.14a)

N : L2

(
n⋃

k=1

γ−k,Cn

)
→ L2 (γ,Cn) (6.4.14b)

P : L2

(
n⋃

k=1

γ−k,Cn

)
→ L2

(
n⋃

k=1

γ−k,Cn

)
(6.4.14c)
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with kernel entries

Mij(v, η) =
e−

1
2
(τ−4τi−η)2+ 1

2
(τ−4τi−v)2

(η − v)

(
η + 4τi
v + 4τj

)ν

χγ(v)χγ−i
(η) (6.4.15a)

Nij(ξ, v; a
(j)) = 4δij

e
a(j)

(
1

ξ+4τj
− 1

v+4τj

)

ξ − v
χγ−j

(ξ)χγ(v) (6.4.15b)

Pij(ξ, η; a
(j)) = 4χτi<τj

e
a(j)

ξ+4τj
− a(j)

η+4τj

ξ − η

(
η + 4τj
η + 4τi

)−ν
χγ−i

(η)χγ−j
(ξ). (6.4.15c)

Proof. As in Lemma 6.12, all the kernels involved are of the form K(z, w) with z and w on

two disjoint curves, say C1 and C2. The Hilbert-Schmidt property it thus ensured by simply

checking that
∫∫

C1×C2
|K(z, w)|2|dz||dw| <∞.

We define the Hilbert space

H := L2

(
γ ∪

n⋃
k=1

1

γ
− 4τk,C

n

)
∼ L2

(
n⋃

k=1

1

γ
− 4τk,C

n

)
⊕ L2(γ,Cn), (6.4.16)

and the matrix operator [K]GEN : H → H

[K]GEN =

[
0 N
M P

]
. (6.4.17)

For now, we denote by “ det ” the determinant defined by the Fredholm expansion (6.4.6);

then, “ det ”(Id − [K]GEN) = det2 (Id − [K]GEN), since its kernel is diagonal-free. We also

introduce another Hilbert-Schmidt operator

[K]GEN,2 =

[
0 −N
0 0

]

whose Carleman determinant (det2) is still well defined and det2 (I− [K]GEN,2) is identically

1.
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We finally perform the following chain of equalities

“ det ”

(
IdL2(R+) − [K]GEN

∣∣∣∣
I

)
= det2

(
Id− [K]GEN

∣∣∣∣
I

)
e−Tr(H)

= det2

(
IdL2(

⋃n
k=1 γ−k) −KGEN

)
e−Tr(H)

= det2 (IdH − [K]GEN) det2 (IdH − [K]GEN,2) = det2 (IdH − [K]GEN)

= “ det ”(IdH − [K]GEN). (6.4.18)

The first equality follows from the fact that [K]GEN−H is diagonal-free; the second equality

follows from invariance of the determinant under Fourier transform; the third identity is an

application of the following result: given A, B Hilbert-Schmidt operators, then

det2 (Id− A) det2 (Id− B) = det2 (Id− A− B + AB)eTr(AB).

It is finally just a matter of computation to show that [K]GEN is an integrable operator

of the form (6.4.5a)-(6.21).

Example: 2 × 2 case. As an explanatory example, let’s consider a Generalized Bessel

process with two times τ1 < τ2 and two intervals I1 := [0, a] and I2 := [0, b].

[K]GEN(x, y)

∣∣∣∣
[0,a],[0,b]

=
(y
x

)ν

⎧⎪⎪⎪⎨⎪⎪⎪⎩
⎡⎢⎢⎢⎣

−4 ∫
Σ

dt ds
(2πi)2

e
− 1

2(τ− 1
t )

2
+xt+1

2(τ− 1
s)

2−ys

(s−t)tνs−ν

∣∣∣∣
[0,a]

0

−4 ∫
Σ

dt ds
(2πi)2

e
− 1

2(τ− 1
t )

2
+xt+1

2(τ− 1
s+Δ12)

2−ys

(s−t+Δ12ts)tνs−ν

∣∣∣∣
[0,a]

0

⎤⎥⎥⎥⎦

+

⎡⎢⎢⎢⎣
0

[
−4 ∫

Σ
dt ds
(2πi)2

e
− 1

2(τ− 1
t )

2
+xt+1

2(τ− 1
s+Δ21)

2−ys

(s−t+Δ21ts)tνs−ν − 1
Δ21

∫
γ
e

x
4Δ21

(t−1)+ y
4Δ21

( 1
t
−1)t−ν−1 dt

2πi

] ∣∣∣∣
[0,b]

0 −4 ∫
Σ

dt ds
(2πi)2

e
− 1

2(τ− 1
t )

2
+xt+1

2(τ− 1
s)

2−ys

(s−t)tνs−ν

∣∣∣∣
[0,b]

⎤⎥⎥⎥⎦
(6.4.19)

with Σ := γ × γ̂.

Then, the integral operator [K]GEN : H → H on the space H := L2 (γ ∪ γ−1 ∪ γ−2,C2)

has the following expression

[K]GEN =

[
0 N
M P

]
(6.4.20a)
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N =
1

ξ − v

[
−4e a

ξ1
− a

v1χγ−1(ξ)χγ(v) 0

0 −4e b
ξ2
− b

v2χγ−2(ξ)χγ(v)

]
(6.4.20b)

M =

⎡⎢⎣ e
(ξ1,τ )2

2 − (v1,τ )2

2

ξ−v
vν1
ξν1
χγ(ξ)χγ−1(v)

e
(ξ1,τ )2

2 − (v1,τ )2

2

ξ−v
vν1
ξν2
χγ(ξ)χγ−1(v)

e
(ξ2,τ )2

2 − (v2,τ )2

2

ξ−v
vν2
ξν1
χγ(ξ)χγ−2(v)

e
(ξ2,τ )2

2 − (v2,τ )2

2

ξ−v
vν2
ξν2
χγ(ξ)χγ−2(v)

⎤⎥⎦ (6.4.20c)

P =
1

ξ − v

[
0 −4e b

ξ2
− b

v2
vν1
vν2
χγ−2(ξ)χγ−1(v)

0 0

]
(6.4.20d)

and the equality between Fredholm determinants holds

det

(
IdL2(R+,C2)−[K]GEN

∣∣∣∣
I1,I2

)
= det

(
IdH − [K]GEN

)
.

6.4.1 Riemann-Hilbert problem and τ-function

We can now relate the Fredholm determinant of the multi-time Generalized Bessel operator

to the isomonodromy theory by defining a suitable Riemann-Hilbert problem.

Definition 6.24. The Riemann-Hilbert problem associated to the integrable kernel (6.4.5a)-

(6.21) is the following:

Γ+(λ) = Γ−(λ)M(λ) λ ∈ Ξ := γ ∪
(

n⋃
j=1

γ−j

)
(6.4.21a)

Γ(λ) = I +O
(
1

λ

)
λ→∞ (6.4.21b)

M(λ) := I − 2πiJGEN(λ) (6.4.21c)

with Γ a (3n − 1) × (3n − 1) matrix which is analytic on C\Ξ and along the collection of

curves Σ satisfies the above jump condition with

JGEN(λ) = f(λ)g(λ)T =⎡⎢⎣ 0 diagNf (λ)Mg(λ)
T 0

diagMf (λ) diagNg(λ) 0 diagMf (λ)B(λ)T
A(λ)T diagNg(λ) 0 A(λ)TB(λ)T

⎤⎥⎦ (6.4.22)
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diagNf · MT
g =

⎡⎢⎢⎣
−4e−θ1+θ1,τχγ . . . −4e−θ1+θn,τχγ

...
...

−4e−θn+θ1,τχγ . . . −4e−θn+θn,τχγ

⎤⎥⎥⎦ ∈ Matn×n(C)

diagMf · diagNg = diag
[
eθ1−θ1,τχγ−1 , . . . , e

θn−θn,τχγ−n

] ∈ Matn×n(C)

diagMf · BT ∈ Matn×(n−1)(C)

=

⎡⎢⎢⎢⎢⎣
0

eθ2−θ2,τχγ−2 0

eθ3−θ3,τχγ−3

. . .

eθn−θn,τχγ−n

⎤⎥⎥⎥⎥⎦

AT · diagNg ∈ Mat(n−1)×n(C)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−4eθ1−θ2χγ−1 0

−4eθ1−θ3χγ−1 −4eθ2−θ3χγ−2 0

−4eθ1−θ4χγ−1 −4eθ2−θ4χγ−2 −4eθ3−θ4χγ−3 0
...

. . .

−4eθ1−θnχγ−1 . . . −4eθn−1−θnχγ−(n−1)
0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

AT · BT ∈ Mat(n−1)×(n−1)(C)

=

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0

−4eθ2−θ3χγ−2

−4eθ2−θ4χγ−2 −4eθ3−θ4χγ−3

...
...

−4eθ2−θnχγ−2 −4eθn−1−θnχγn−1 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with θk =

ak

λk
+ ν lnλk and θh,τ =

(λh,τ )
2

2
, k, h = 1, . . . , n.
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Example: 2× 2 case. In the simple 2-times case, the jump matrix reads

JGEN(λ) =⎡⎢⎢⎢⎢⎢⎢⎣
0 0 −4e−θ1+θ1,τχγ −4e−θ1+θ2,τχγ 0

0 0 −4e−θ2+θ1,τχγ −4e−θ2+θ2,τχγ 0

eθ1−θ1,τχγ−1 0 0 0 0

0 eθ2−θ2,τχγ−2 0 0 eθ2−θ2,τχγ−2

−4eθ1−θ2χγ−1 0 0 0 0

⎤⎥⎥⎥⎥⎥⎥⎦ . (6.4.23)

The jump matrix, though it might look complicated, is equivalent to a matrix with

constant entries

eT
GEN

J0e
−TGEN

= JGEN

TGEN = diag [−θ1, . . . ,−θn,−θ1,τ , . . . ,−θn,τ ,−θ2, . . . ,−θn] (6.4.24)

so that the matrix ΨGEN(λ) = Γ(λ)eT
GEN(λ) solves a Riemann-Hilbert problem with constant

jumps and it is a solution to a polynomial ODE.

Referring to the theorems described in Section 3.4 (see also [9], [10] and [11]), we can

claim

Theorem 6.25. Given n times τ1 < τ2 < . . . < τn and given the collection of intervals

I = {I1, . . . , In} with

Ij :=
[
a
(j
1 , a

(j)
2

]
∪
[
a
(j)
3 , a

(j)
4

]
∪ . . . ∪

[
a
(j)
2kj−1, a

(j)
2kj

]
, (6.4.25)

the Fredholm determinant det

(
Id−[K]GEN

∣∣∣∣
I

)
is equal to the isomonodromic τ -function

related to the Riemann-Hilbert problem in Definition 6.24.

In particular, ∀ j = 1, . . . , n and ∀ � = 1, . . . , 2kj we have

∂ ln det

(
Id−[K]GEN

∣∣∣∣
I

)
=

∫
Ξ

Tr
(
Γ−1− (λ)Γ′−(λ)Θ∂(λ)

) dλ

2πi
(6.4.26a)

Θ∂(λ) := ∂M(λ)M(λ)−1 = −2πi ∂JGEN
(
I + 2πiJGEN

)
(6.4.26b)

Ξ := γ ∪ γ−1 ∪ . . . ∪ γ−n; the ′ notation means differentiation with respect to λ, while with ∂

we denote any of the partial derivatives ∂τj , ∂a(j)�
, ∂τ .
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Proof. The following formula holds in general (see Theorem 3.14 in Chapter 3)

ω(∂) = ∂ ln det

(
Id−[K]GEN

∣∣∣∣
I

)
−H(M) (6.4.27)

where

ω(∂) :=

∫
Ξ

Tr
(
Γ−1− (λ)Γ′−(λ)Θ∂(λ)

) dλ

2πi

H(M) :=

∫
Ξ

(
∂f ′ Tg+ f ′ T∂g

)
dλ− 2πi

∫
Σ

gT f ′∂gT f dλ.

Therefore, it is enough to verify that H(M) ≡ 0 with M(λ) = I − JGEN(λ).

Moreover, recalling of the Jimbo-Miwa-ueno residue formula, it can be shown that

Theorem 6.26. The following equality holds∫
Ξ

Tr
(
Γ−1− (λ)Γ′−(λ)Θ∂(λ)

) dλ

2πi

= − resλ=∞Tr
(
Γ−1Γ′∂TGEN

)
+

n∑
i=1

resλ=−4τi Tr
(
Γ−1Γ′∂TGEN

)
. (6.4.28)

In particular, regarding the derivative with respect to the endpoints a(j) (j = 1, . . . , n)

resλ=−4τk Tr
(
Γ−1Γ′∂a(k)T

GEN
)
= − (

Γ−10 Γ1

)
(k,k)

− χk>1

(
Γ−10 Γ1

)
(2n−1+k,2n−1+k)

. (6.4.29)

Regarding the derivative with respect to τ

resλ=∞Tr
(
Γ−1Γ′∂τTGEN

)
= −

n∑
k=1

Γ1;n+k,n+k. (6.4.30)

Finally, regarding the derivative with respect to the times τj (j = 1, . . . , n)

resλ=∞Tr
(
Γ−1Γ′∂τkT

GEN
)
= 4Γ1;n+k,n+k (6.4.31)

resλ=−4τk Tr
(
Γ−1Γ′∂τkTB

)
= −4ν (Φ0;k,k + χk>1Φ0;2n−1+k,2n−1+k)

+4a(k)(Φ1;k,k + χk>1Φ1;2n−1+k,2n−1+k) (6.4.32)

where, given the asymptotic expansion of the matrix Γ ∼ Γ0 + λkΓ1 + λ2
kΓ2 + · · · in a

neighbourhood of −4τk, we defined Φ0 := Γ−10 Γ1 and Φ1 := 2Γ−10 Γ2 −
(
Γ−10 Γ1

)2
.

Remark 6.27. We stated the second part of the theorem above in the simple case I =
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{
[0, a(1)], . . . , [0, an]

}
in order to avoid heavy notation. The general case follows the same

guidelines shown in the proof.

Proof. We will calculate the residues separately and we will focus on the different parameters

(a(j), τj and τ).

Residue at ∞. There’s no contribution from the residue at infinity when we consider the

derivative with respect to the endpoints a(j). On the other hand, taking the derivative with

respect to the times τk gives:

∂τkT
GEN =

(
4a(k)

λ2
k

− 4ν

λk

)
(Ek,k + χk>1E2n−1+k,2n−1+k)− 4λk,τEn+k,n+k (6.4.33)

thus the residue is

resλ=∞Tr
(
Γ−1Γ′∂τkT

GEN
)
= 4Γ1;n+k,n+k ∀ k = 1, . . . , n. (6.4.34)

We follow a similar argument for the parameter τ :

∂τT
GEN =

n∑
k=1

λk,τEn+k,n+k (6.4.35)

Thus,

resλ=∞Tr
(
Γ−1Γ′∂τTGEN

)
= −

n∑
k=1

Γ1;n+k,n+k. (6.4.36)

Residue at 4τk. We recall the asymptotic expansion of the matrix Γ in a neighbourhood

of −4τk:

Γ ∼ Γ0 + λkΓ1 + λ2
kΓ2 + · · · λ→ −4τk, ∀ k = 1, . . . , n. (6.4.37)

Remark 6.28. Note that the asymptotic expansion near −4τk is, in general, different for

each k, but we wrote them in this way in order to avoid heavy notation.

Regarding the derivative with respect to the endpoints a(k), we have

∂a(k)T
GEN = − 1

λk

[Ek,k + χk>1E2n−1+k,2n−1+k] (6.4.38)
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which implies

resλ=−4τkTr
(
Γ−1Γ′∂a(k)T

GEN
)
= − (

Γ−10 Γ1

)
(k,k)

− χk>1

(
Γ−10 Γ1

)
(2n−1+k,2n−1+k)

(6.4.39)

and regarding the derivative with respect to the times τk, we have

∂τkT
GEN =

(
4a(k)

λ2
k

− 4ν

λk

)
[Ek,k + χk>1E2n−1+k,2n−1+k]− 4λk,τEn+k,n+k (6.4.40)

thus,

resλ=−4τkTr
(
Γ−1Γ′∂τkTB

)
= −4ν (Φ0;k,k + χk>1Φ0;2n−1+k,2n−1+k)

+4a(k)(Φ1;k,k + χk>1Φ1;2n−1+k,2n−1+k). (6.4.41)

There is no contribution from the residue at −4τk (k = 1, . . . , n) when taking the derivative

with respect to τ .

6.5 Conclusions and future developments

In the present Chapter we have analyzed gap probabilities for the so-called Generalized

Bessel process ([76], [77]) restricted to a collection of disjoint intervals.

We stress out that two completely new contributions were introduced along the present

work: a Lax pair for the single-time Generalized Bessel operator and the explicit definition

of the multi-time Generalized Bessel kernel.

Both for the single-time and multi-time process, the main result was the connection

with a Riemann-Hilbert problem associated to an IIKS integrable operator, whose Fred-

holm determinant coincide with the aforementioned gap probabilities. The presence of such

Riemann-Hilbert problem allows a deeper analysis of these quantities, if desired. It can be

the starting point for many possible future developments and we will briefly cite a few here.

The first study that can be done on gap probabilities is the asymptotic behaviour as the

size of the intervals go to∞ or 0; it is, of course, expected that as the Borel set, on which we

calculate the gap probability, shrinks to zero, the gap probability tends to 1 = det(Id). The

second and more interesting analysis is the degenerative behaviour as τ → ±∞. Indeed, the

origin of the Generalized Bessel operator itself suggests that, being a critical kernel depending

on a parameter τ ∈ R, the gap probabilities may degenerate into gap probabilities of an Airy

process or a Bessel process. Physically, this means to start at the critical point at time t∗ and

move away from it along the soft edge of the boundary of the domain (as τ → −∞), where
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the local behaviour is described by the Airy process, or along the hard edge (as τ → +∞)

where the local behaviour is given by the Bessel process (see Figure 6.2). In order to achieve

the conjectured results, one may consider to perform a steepest descent analysis (see Chapter

4) on the associated Riemann-Hilbert problem, as it has been done in the coming Chapter

7.

In the same spirit as it was done for the Airy (([5], [10], [100], [106]), Pearcey ([103]) and

Bessel processes ([101], [102] and Chapter 5), one may wonder whether there exist partial

or ordinary differential equations that describe the τ -function (i.e. the gap probabilities) of

the Generalized Bessel process. From the given Riemann-Hilbert problem, it is possible to

give a formulation of a Lax pair, as we did in Section 6.3.2, and calculate the compatibility

equations which will give a system of coupled first order ODEs; then, the system may be

reduced to a higher order ODE in one of the dependent variables appearing originally (as

we did for the Bessel process in Chapter 5). This approach can be applied in the multi-time

setting as well. Another approach can be the following: if it is possible to prove that the τ -

function under consideration is a multi-component Kadomtsev-Petviashvili (KP) τ -function,

by verifying the Hirota bilinear equations, then it will be possible to manually construct

ODEs which are satisfied by the τ -function itself. We refer to the papers [29] and [55] and

to the monograph [47] for all the details.

As final remark, we would like to thank Dr. Bálint Vető for the useful exchange of

emails on the multi-time Generalized Bessel kernel and for the productive discussions at the

ICTP (Trieste, Italy) during the Summer School “Random Matrices and Growth Models”

in September 2013.
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Chapter 7

Asymptotics of gap probabilities:

from the tacnode to the Airy process

7.1 Introduction

In this last chapter we will focus on the gap probabilities of the so-called tacnode process. In

particular, we will show that its gap probability restricted to a collection of intervals is again

equal to the isomonodromic τ -function; however, we will not derive a system of differential

equations for such gap probability, but on the other hand we will focus on its asymptotic

behaviour. Indeed, the nature of the tacnode process as a critical transition process suggests

that its gap probability can degenerate in the limit as some physical parameters diverge to

either plus or minus infinity, as it will be clear below.

Let us start from the model of n non-intersecting Brownian path and let assume that all

the paths start at two given fixed points and end at two other points (which may be equal

to the starting points). For every time t ∈ [0, 1] (1 being the end time where the particles

collapse in the two final points), the positions of the Brownian paths form a determinantal

process. Moreover, as the number of particles tends to infinity, the paths fill a specific limit

region which depends on the relative position of the starting and ending points.

There are three possible scenarios: two independent connected components similar to

ellipses or one connected component similar to two “merged” ellipses (see Figure 7.1 and

7.2). It is well-known that the microscopic behaviour of such infinite particle system is

regulated by the Sine process in the bulk of the particle bundles ([85]), by the Airy process

along the soft edges ( [28], [61], [60], [75], [100]) and by the Pearcey process in the cusp

singularities ([13], [103]), when they occur.

There exist a third critical configuration, which can be seen as a limit of the large sepa-
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Figure 7.1: Numerical simulation of 90 non-intersecting Brownian motions with two starting
points ±α = 1 and two ending positions ±β = 1 in case of large separation between the
endpoints.

ration case, when the two bundles are tangential to each other in one point, called tacnode

point (see Figure 7.3), as well as a limit of the small separation case, when the two cusp

singularities coincide at one point. In a microscopic neighbourhood of this point the fluctu-

ations of the particles are described by a new critical process called tacnode process. In this

limit setting, a parameter σ appears which controls the strength of interaction between the

left-most particles and the right-most ones (σ can be thought as a pressure or temperature

parameter).

The kernel of such process in the single-time case has been first introduced by Adler,

Ferrari and Van Moerbeke in [3] as a scaling limit of a model of random walks, and shortly

after by Delvaux, Kuijlaars and Zhang in [28], where the kernel was expressed in terms of a 4×
4 matrix valued Riemann-Hilbert problem. In [62] Johansson formulated the multi-time (or

extended) version of the process, remarking nevertheless the fact that this extended version

does not automatically reduce to the single-time version given in [28]. In this paper, for the

first time, the kernel was expressed in terms of the resolvent and Fredholm determinant of

the Airy kernel.

In [4] the authors analyzed the same process as arising from random tilings instead of

self-avoiding Brownian paths and they proved the equivalency of all the above formulations.

A similar result has been obtained by Delvaux in [27], where a Riemann-Hilbert expression
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Figure 7.2: Numerical simulation of 90 non-intersecting Brownian motions with two starting
points ±α = 0.5 and two ending positions ±β = 0.5 in case of small separation between the
endpoints.

for the multi-time tacnode kernel is given. A more general formulation of this process has

been studied in [35], where the limit shapes of the two groups of particles are allowed to be

non-symmetric.

Physically, if we start from the tacnode configuration and we push together the two

ellipses, they will merge giving rise to the single connected component in Figure 7.2, while if

we pull the ellipses apart, we simply end up with two disjoint ellipses as in Figure 7.1. It is

thus natural to expect that the local dynamic around the tacnode point will in either cases

degenerates into a Pearcey process or an Airy process, respectively.

The degeneration tacnode-Pearcey has been proven in [43] where the authors showed a

uniform convergence of the tacnode kernel to the Pearcey kernel over compact sets in the

limit as the two bundles are pushed to merge together. On the other hand, the method used

in [43] cannot be extensively applied to the tacnode-Airy degeneration. The Airy process

is structurally different from the Pearcey, since it shows the feature of a “last particle” (or

largest eigenvalue in the Random Matrix setting), that is described by the well-known Tracy-

Widom distribution ([100]). The method above does not allow to recover the emerging of

the “last particle” feature from the tacnode-to-Airy degeneration, which, on the other hand,

is showed in the present work.
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Figure 7.3: Numerical simulation of 90 non-intersecting Brownian motions with two starting
points ±α = .75 and two ending positions ±β = .75 in case of critical separation between
the endpoints.

The purpose of this chapter is to study the asymptotic behaviour of the gap probability

of the (single-time) tacnode process and its degeneration into the gap probability of the Airy

process. There are two types of regimes in which this degeneration occurs: the limit as

σ → +∞ (large separation), which physically corresponds to pulling apart the two sets of

Brownian particles touching on the tacnode point (see Figure 7.7), and the limit as τ → ±∞
(large time), which corresponds to moving away from the singular point along the boundary

of the space-time region swept out by the non-intersecting paths (see Figure 7.10). Numerical

evidences of such degenerations were showed in [12].

An expression for the single-time tacnode kernel is the following (see [4, formula (19)])

K
tac(τ ; x, y) =

K
(τ,−τ)
Ai (σ − x, σ − y) +

3
√
2

∫ ∞

σ̃

dz

∫ ∞

σ̃

dwAτ
x−σ(w)

(
Id−KAi

∣∣∣∣
[σ̃,+∞)

)−1
(z, w)A−τy−σ(z)

(7.1.1)
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with σ̃ := 2
2
3σ and

Ai(τ)(x) := eτx+
2
3
τ3Ai(x) =

∫
γR

dλ

2iπ
e

λ3

3
+λ2τ−xλ

Ai(x) :=

∫
γR

dλ

2iπ
e

λ3

3
−xλ = −

∫
γL

dλ

2iπ
e−

λ3

3
+xλ

Aτ
x(z) := Ai(τ)(x+

3
√
2z)−

∫ ∞

0

dwAi(τ)(−x+
3
√
2w)Ai(w + z)

K
(τ,−τ)
Ai (−x,−y) :=

∫ ∞

0

duAi(τ)(−x+ u)Ai(−τ)(−y + u)

KAi(z, w) :=

∫ ∞

0

duAi(z + u)Ai(w + u)

where the contour γR is the contour extending to infinity in the λ-plane along the rays e±i
π
3 ,

oriented upwards and entirely contained in the right half plane (�(λ) > 0), and γL := −γR.
The quantity of interest, i.e. the gap probability of the process, is expressed in terms of

the Fredhom determinant of an integral operator with kernel (7.1.1). Given a Borel set I,
then

P (no particles in I) = det

(
Id−Ktac

∣∣∣∣
I

)
. (7.1.2)

The first difficulty in studying the tacnode process is the expression of its kernel, since

it is highly transcendental and it involves the resolvent of the Airy operator. It it thus

necessary to reduce it to a more approachable form.

The first important step was [12, Theorem 3.1] where it was proved that gap probabilities

of the tacnode process can be defined as ratio of two Fredholm determinants of explicit

integral operators with kernels that only involves contour integrals, exponentials and Airy

functions. This result, which will be recalled in Section 7.3, will be our starting point in

the investigation of the gap probabilities and their asymptotics. The second step will be

to find an appropriate integral operator in the sense of Its-Izergin-Korepin-Slavnov ([50])

whose Fredholm determinant coincides with the quantity (7.1.2). In this way, it will be

possible to give a formulation of the gap probabilities of the tacnode in terms of a Riemann-

Hilbert (RH) problem, naturally associated to an IIKS integral operator (see Chapter 3.3

and [45]). Finally, applying well-known steepest descent methods (Chapter 4) to the above

RH problem along the lines of [11], we will be able to prove the conjectured degeneration

into Airy processes.

The outline of the chapter is the following: in Section 7.2 we state the main results of

the paper, which will be proved in Sections 7.3, 7.4 and 7.5. In particular, Section 7.3 deals

with some preliminary calculations which are necessary to set a Riemann-Hilbert problem
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on which we shall later perform some steepest descent analysis in the limit as σ → +∞
(Section 7.4) or τ → ±∞ (Section 7.5).

7.2 Results

The first results on asymptotic regime of the tacnode process were stated in [12]. We are

recalling them here for the sake of completeness.

Theorem 7.1. Let I :=
⋃K

j=1[a2j−1, a2j] be collection of intervals, with aj = a(sj) = −σ −
τ 2 + sj. Keeping the overlap σ fixed, we have

lim
τ→±∞

det

(
Id−Ktac

∣∣∣∣
I

)
= det

(
Id−KAi

∣∣∣∣
J

)
(7.2.1)

with J =
⋃K

=1[s2−1, s2]. Analogously, keeping τ fixed, we obtain

lim
σ→+∞

det

(
Id−Ktac

∣∣∣∣
I

)
= det

(
Id−KAi

∣∣∣∣
J

)
. (7.2.2)

Proof. The convergence follows easily by directly studying the kernel of the extended tacnode

process (see [4, formula (19)]), since the term involving the resolvent of the Airy kernel tends

to zero, uniformly over compact sets of the spatial variables x− σ − τ 2.

The physical interpretation of such results is that if we follow, starting from the tacnode

point, only one of the two soft edges (either in the case of large separation or in the case of

large times) we can easily see that the tacnode kernel converges to the Airy kernel, therefore

the convergence of the process respectively. Nevertheless, a more interesting situation is the

one in which, as we are taking the limit, we follow both soft edges and the tacnode process

degenerates into a couple of Tracy-Widom distributions, in analogy with the Pearcey-to-Airy

transition (see [11]). In this case, half of the space variables (endpoints of the gaps) moves

far away from the tacnode following the left branch of the boundary of the space-time region

swept by the particles, and the other half goes in the opposite direction. Therefore, it is

expected that the gap probability of the tacnode process for a “large gap” factorize into two

Fredholm determinants for semi-infinite gaps of the Airy process.

Numerically, these regimes are illustrated in Figure 7.4 and 7.5. The results were already

conjectured in [12] and they are here rigorously proved.

In the simple case with only one interval, we have the following theorems.
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Figure 7.4: The relative values det(Id−ΠKtacΠ)
F2(a)F2(b)

− 1 with Π the projection on the interval

[atac, btac], atac = a−σ−τ 2 and btac = −b+σ+τ 2, plotted against τ , showing the convergence
of the tacnode gap probability to the product of two Tracy-Widom distributions as σ → +∞.
Here a = −0.2, b = 0.4.

Theorem 7.2 (Asymptotics as σ → +∞). Let Ktac and KAi be the kernels associated to

the tacnode and Airy process respectively. Let

a = a(t) = −σ − τ 2 + t b = b(s) = σ + τ 2 − s (7.2.3)

then as σ → +∞

det

(
Id−Ktac

∣∣∣∣
[−σ−τ2+t,σ+τ2−s]

)
=

det

(
Id−KAi

∣∣∣∣
[s,+∞)

)
det

(
Id−KAi

∣∣∣∣
[t,+∞)

)(
1 +O(σ−1)

)
(7.2.4)

and the convergence is uniform over compact sets of the variables s, t provided

−∞ < s, t < K1(σ + τ 2), 0 < K1 < 1.

Theorem 7.3 (Asymptotics as τ → ±∞). Let Ktac and KAi be the kernels associated to
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Figure 7.5: The relative values det(Id−ΠKtacΠ)
F2(a)F2(b)

− 1 with Π the projection on the interval

[atac, btac], atac = a−σ−τ 2 and btac = −b+σ+τ 2, plotted against σ, showing the convergence
of the tacnode gap probability to the product of two Tracy-Widom distributions as τ → +∞.
Here a = −0.2, b = 0.4.

the tacnode and Airy process respectively. Let

a = a(t) = −σ − τ 2 + t b = b(s) = σ + τ 2 − s (7.2.5)

then as τ → ±∞

det

(
Id−Ktac

∣∣∣∣
[−σ−τ2+t,σ+τ2−s]

)
=

det

(
Id−KAi

∣∣∣∣
[s,+∞)

)
det

(
Id−KAi

∣∣∣∣
[t,+∞)

)
det

(
Id−KAi

∣∣∣∣
[σ̃,∞)

)
(1 +O(τ−1))

det

(
Id−KAi

∣∣∣∣
[σ̃,∞)

)

= det

(
Id−KAi

∣∣∣∣
[s,+∞)

)
det

(
Id−KAi

∣∣∣∣
[t,+∞)

)(
1 +O(τ−1)

)
(7.2.6)
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and the convergence is uniform over compact sets of the variables s, t provided

−∞ < s, t < K1(σ + τ 2)

t = 4τ 2 − δ, 0 < δ <
7

3
K2τ

2; s = τ 2 + 2σ − δ, 0 < δ < K3

(
2σ +

2

3
τ 2
)

for some 0 < K1, K2, K3 < 1.

More generally, we consider the tacnode process restricted to a collection of intervals.

Theorem 7.4. Given

I =
J⋃

j=1

[a2j−1, a2j] ∪ [a2J+1, b0] ∪
K⋃
k=1

[b2k−1, b2k] (7.2.7)

where

a = a(s) = −σ − τ 2 + t b = b(t2K+1−) = σ + τ 2 − s2K+1−, (7.2.8)

then as σ → +∞

det

(
Id−Ktac

∣∣∣∣
I

)
= det

(
Id−KAi

∣∣∣∣
J1

)
det

(
Id−KAi

∣∣∣∣
J2

)(
1 +O(σ−1)

)
(7.2.9)

or as τ → ±∞

det

(
Id−Ktac

∣∣∣∣
I

)
= det

(
Id−KAi

∣∣∣∣
J1

)
det

(
Id−KAi

∣∣∣∣
J2

)(
1 +O(τ−1)

)
(7.2.10)

where

J1 =
J⋃

=1

[t2−1, t2] ∪ [t2J+1,+∞) J2 =
K⋃
=1

[s2−1, s2] ∪ [s2K+1,+∞) (7.2.11)

and the convergence is uniform over compact sets of the variables s, t provided

−∞ < s, t < K1(σ + τ 2)

t = 4τ 2 − δ, 0 < δ <
7

3
K2τ

2; s = τ 2 + 2σ − δ, 0 < δ < K3

(
2σ +

2

3
τ 2
)

for some 0 < K1, K2, K3 < 1.

The parametrization of the endpoints a and b in Theorems 7.2 and 7.3 (and of a and

b in Theorem 7.4) has the following meaning. At the critical time 0 < ttac < 1, the
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two bulks tangentially touch at the tacnode point Ptac. From the common tacnode point

a(ttac) = b(ttac), two new endpoints [a(t), b(t)] emerge and move away along the branches of

the boundary.

The tacnode point process describes the statistics of the random walkers in a scaling

neighborhood of t = ttac and a = b = Ptac. The asymptotics as τ → ±∞ given in Theorem

7.3 is the regime where we look “away” from the critical point (either in the future for τ > 0

or in the past for τ < 0) and it is expected to reduce to two Airy point processes, which

describe the edge-behavior of the random walkers. Similarly, when we take the limit as

σ → +∞ (Theorem 7.2) we are physically pushing away the two bulks from each other and

the expected regime around the not-any-more critical time will be again a product of two

Airy point processes.

The proof of these theorems relies essentially upon the construction of a Riemann-Hilbert

problem deduced from a suitable IIKS integrable kernel and the steepest descent method. In

the next section we will show how to deduce such integrable kernel from the tacnode kernel.

We will start with considerations that apply to the more general case, but then we will

specialize to the single interval case (Theorems 7.2 and 7.3) in order to avoid unnecessary

complications, which are purely notational and not conceptual.

7.3 The Riemann-Hilbert setting for the gap probabil-

ities of the tacnode process

We recall the definition of the tacnode kernel, referring to the formula given by Adler,

Johansson and Van Moerbeke in [4].

The single-time tacnode kernel reads (see [4, formula (19)])

K
tac(τ ; x, y) =

K
(τ,−τ)
Ai (σ − x, σ − y) +

3
√
2

∫ ∞

σ̃

dz

∫ ∞

σ̃

dwAτ
x−σ(w)

(
Id−KAi

∣∣∣∣
[σ̃,+∞)

)−1
(z, w)A−τy−σ(z)

(7.3.1)
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where σ̃ := 2
2
3σ and the functions appearing in the above definition are specified below:

Ai(τ)(x) := eτx+
2
3
τ3Ai(x) =

∫
γR

dλ

2iπ
e

λ3

3
+λ2τ−xλ

Ai(x) :=

∫
γR

dλ

2iπ
e

λ3

3
−xλ = −

∫
γL

dλ

2iπ
e−

λ3

3
+xλ

Aτ
x(z) := Ai(τ)(x+

3
√
2z)−

∫ ∞

0

dwAi(τ)(−x+
3
√
2w)Ai(w + z)

K
(τ,−τ)
Ai (−x,−y) :=

∫ ∞

0

duAi(τ)(−x+ u)Ai(−τ)(−y + u)

KAi(z, w) :=

∫ ∞

0

duAi(z + u)Ai(w + u)

The contour γR is a contour extending to infinity in the λ-plane along the rays e±i
π
3 , oriented

upwards and entirely contained in the right half plane (�(λ) > 0), and γL := −γR.
First of all, since only the combination x − σ, y − σ appears, we shift the variables and

we perform a spatial rescaling of the form u = 3
√
2u′. The resulting kernel is

K̃(x, y) :=
3
√
2Ktac(

3
√
2x,

3
√
2y) =

3
√
2

∫ ∞

0

duAi(τ)(
3
√
2(u− x))Ai(−τ)( 3

√
2(u− y))+

+
3
√
2

∫ ∞

σ̃

dz

∫ ∞

σ̃

dwAτ
3√2x

(w)

(
Id−KAi

∣∣∣∣
σ̃

)−1
(z, w)A−τ3√2y

(w). (7.3.2a)

For the sake of brevity, we shall introduce the operators KAi, K
(τ,−τ)
Ai , Aτ (with abuse of

notation) as the operators with the kernels,

K
(τ,−τ)
Ai := K

(τ,−τ)
Ai (

3
√
2x,

3
√
2y)

=
3
√
2

∫ ∞

0

duAi(τ)(
3
√
2(u− x))Ai(−τ)( 3

√
2(u− y)) (7.3.2b)

KAi := KAi(x, y)

∣∣∣∣
[σ̃,∞)

(7.3.2c)

Bτ (x, z) := 2
1
6Ai(τ)

(
3
√
2(x+ z)

)
, A(z, w) := Ai(z + w) (7.3.2d)

Aτ (x, z) := Aτ
3√2x

(z) = Bτ (x, z)−
∫ ∞

0

dwBτ (−x, w)A(w, z) (7.3.2e)

moreover, we set π as the projector on the interval [σ̃,∞).

Given the above definitions, we can rewrite the tacnode kernel in the following way
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Proposition 7.5. The kernel K̃ can be represented as

K̃(x, y) = K
(τ,−τ)
Ai (x, y) +

∫
[σ̃,∞)

dz

∫
[σ̃,∞)

dwAτ (x, z)R(z, w)A−τ (z, y) (7.3.3)

R(z, w) :=

(
Id−KAi

∣∣∣∣
[σ̃,∞)

)−1
(z, w).

Alternatively,

K̃ = K
(τ,−τ)
Ai + Aτπ(Id−KAi)

−1πAT
−τ (7.3.4)

where we recall that K̃ is the transformed of the kernel Ktac under the change of variables

u′ = 2−
1
3 (u− σ).

Let I = [a1, a2] � [a3, a4] · · · � [a2K−1, a2K ] and denote by Π the projector on I. We will

denote with Π̃ the projection on the rescaled and translated collection of intervals [ã1, ã2] �
. . .� [ã2K−1, ã2K ], where ãj := 2−

1
3 (aj−σ). We are interested in studying the gap probability

of the tacnode process restricted to this collection of intervals, namely

det(Id−ΠKtacΠ) = det

⎛⎝Id−2 1
3 Π̃

⎛⎝K
(τ,−τ)
Ai + Aτπ

(
Id−KAi

∣∣∣∣
[σ̃,∞)

)−1
πAT

−τ

⎞⎠ Π̃

⎞⎠ .

(7.3.5)

The following proposition is a restatement of Theorem 3.1 from [12], adapted to the

single-time case which we are examining.

Proposition 7.6. The gap probability of the tacnode process admits the following equivalent

representation

det(Id−ΠKtacΠ) = F2(σ̃)
−1 det

(
Id−Π̂HΠ̂

)
:=

= F2(σ̃)
−1 det

(
Id−

[
πKAiπ − 6

√
2πAT

−τ Π̃

− 6
√
2Π̃Aτπ

3
√
2Π̃K

(τ,−τ)
Ai Π̃

])
(7.3.6)

where Π̂HΠ̂ is an operator acting on the Hilbert space L2([σ̃,∞))⊕ L2(R), Π̂ := π ⊕ Π̃ and

F2(σ̃) is the Tracy–Widom distribution

F2(σ̃) := det

(
Id−KAi

∣∣∣∣
[σ̃,∞)

)
. (7.3.7)

Remark 7.7. The projection π in (7.3.6) is redundant since by definition the operator acts

on the Hilbert space L2([σ̃,∞)), but we will keep it for convenience.

118



The gap probabilities of the tacnode process are expressible as ratio of two Fredholm

determinants. Therefore, we can interpret the tacnode process as a (formal) conditioned

process: its gap probabilities are the gap probabilities of the process H conditioned such

that there are no points in the interval [σ̃,∞). We refer to [12, Remark 3.1 and Appendix]

for a discussion about possible probabilistic interpretations of such result.

Proof. The identity is based on the following operator identity (all being trace-class pertur-

bations of the identity)

det

(
Id−

[
πKAiπ − 6

√
2πAT

−τ Π̃

− 6
√
2Π̃Aτπ

3
√
2Π̃K

(τ,−τ)
Ai Π̃

])
= det

[
Id−πKAiπ 0

0 Id

]
det

[
Id 0

6
√
2Π̃Aτπ Id

]
×

× det

⎡⎣ Id 6
√
2(Id−KAi)

−1
σ̃ πAT

−τ Π̃

0 Id− 3
√
2
{
Π̃K

(τ,−τ)
Ai Π̃− Π̃Aτπ(Id−KAi)

−1
σ̃ πAT

−τ Π̃
} ⎤⎦

= det (Id−πKAiπ) det(Id−Π̃K̃Π̃).

Our next goal is to find suitable Fourier representations of the various operators appearing

in (7.3.6). In order to do that, we will rewrite the kernels involved, with their projections

respectively, in terms of contour integrals. The results are shown in the following two lemmas.

Their proof is just a matter of straightforward calculations using Cauchy’s residue theorem.

Lemma 7.8. The kernels involved in the definitions (7.3.2b)-(7.3.2e) can be represented as

the following contour integrals

Bτ (x, z) = 2−
1
6

∫
γR

dλ

2iπ
eθ̃τ (λ;x+z), A(z, w) =

∫
γR

dλ

2iπ
eθ(λ;z+w) (7.3.8a)

Aτ (x, z) = 2−
1
6

[
−
∫
γL

dμ

2πi
e−θ̃−τ (μ;x+z) −

∫
γL

dμ

2πi

∫
γR

dλ

2πi

e−θ̃−τ (μ;−x)+θ(λ;z)

μ− λ

]
(7.3.8b)

K
(τ,−τ)
Ai (x, y) =

∫
γR

dλ

2iπ

∫
γL

dμ

2iπ

e−θ̃−τ (μ,−x)+θ̃−τ (λ,−y)
3
√
2(μ− λ)

(7.3.8c)

KAi(z, w) :=

∫
γR

dλ

2iπ

∫
γL

dμ

2iπ

eθ(λ,z)−θ(μ,w)

μ− λ
(7.3.8d)

with θ̃τ (λ; x) :=
λ3

6
+ τ

22/3
λ2 − xλ and θ(λ; x) := λ3

3
− xλ.

Moreover, if Π̃ is the projector on the collection of intervals
⋃

j[ã2j−1, ã2j] and π is the pro-

jector on the interval [σ̃,+∞), a simple application of Cauchy’s theorem yields the following
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identities

πKAiπ(z, w) =

∫
iR

dξ

2iπ
eξ(z−σ̃)

∫
iR

dζ

2iπ
eζ(σ̃−w)

∫
γR

dλ

2iπ

∫
γL

dμ

2iπ

eθ(λ,σ̃)−θ(μ,σ̃)

(μ− λ)(ξ − μ)(λ− ζ)
(7.3.9)

Indeed, if w > σ̃ we can close the ζ-integration with a big semicircle on the right-half plane,

picking up the residue at λ ∈ γR; viceversa, if w < σ̃ we close the ζ-integration with a big

semicircle in the left-half plane, which yields zero since there are no singularities within this

contour of integration; the same argument applies for the variable z.

Similarly,

Π̃Aτπ(x, w) =
2K∑
j

(−1)j
∫
iR

dξ

2iπ
eξ(ãj−x)

∫
iR

dζ

2iπ
eζ(σ̃−w)

[∫
γR

dλ

2πi

eθ̃τ (λ;ãj+σ̃)

(ξ − λ)(λ− ζ)
−

−
∫
γL

dμ

2πi

∫
γR

dλ

2πi

e−θ̃−τ (μ;−ãj)+θ(λ;σ̃)

(μ− λ)(ξ − μ)(λ− ζ)

]
(7.3.10)

πAT
−τ Π̃(z, y) =

∑
j

(−1)j
∫
iR

dξ

2iπ
eξ(z−σ̃)

∫
iR

dζ

2iπ
eζ(y−ãj)

[
−
∫
γL

dμ

2πi

e−θ̃τ (μ;ãj+σ̃)

(ξ − μ)(μ− ζ)
−

−
∫
γL

dμ

2πi

∫
γR

dλ

2πi

eθ̃−τ (λ;−ãj)−θ(μ;σ̃)

(μ− λ)(ξ − μ)(λ− ζ)

]
(7.3.11)

Π̃K
(τ,−τ)
Ai (x, y)Π̃ = (7.3.12)

=
∑
j,k

(−1)j+k

∫
iR

dξ

2iπ
eξ(ãj−x)

∫
iR

dζ

2iπ
eζ(y−ãk)

∫
γR

dλ

2iπ

∫
γL

dμ

2iπ

e−θ̃−τ (μ,−ãj)+θ̃−τ (λ,−ãk)

(μ− λ)(ξ − μ)(λ− ζ)
.

Lemma 7.9. The Fourier representation of the previous operators is the following

F(Π̃Aτπ)(ξ, ζ) =
∑
j

(−1)j
2iπ

eξãj+ζσ̃

[∫
γR

dλ

2πi

eθ̃τ (λ;ãj+σ̃)

(ξ − λ)(λ− ζ)
−

−
∫
γL

dμ

2πi

∫
γR

dλ

2πi

e−θ̃−τ (μ;−ãj)+θ(λ;σ̃)

(μ− λ)(ξ − μ)(λ− ζ)

]
(7.3.13)
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F(πAT
−τ Π̃)(ξ, ζ) =

∑
k

(−1)k
2iπ

e−σ̃ξ−ãkζ
[
−
∫
γL

dμ

2πi

e−θ̃τ (μ;ãk+σ̃)

(ξ − μ)(μ− ζ)
−

−
∫
γL

dμ

2πi

∫
γR

dλ

2πi

eθ̃−τ (λ;−ãk)−θ(μ;σ̃)

(μ− λ)(ξ − μ)(λ− ζ)

]
(7.3.14)

F(Π̃K(τ,−τ)
Ai Π̃)(ξ, ζ) =

∑
j,k

(−1)j+k

2iπ
eãjξ−ãkζ

∫
γR

dλ

2iπ

∫
γL

dμ

2iπ

e−θ̃−τ (μ,−ãj)+θ̃−τ (λ,−ãk)

(μ− λ)(ξ − μ)(λ− ζ)
(7.3.15)

F(πKAiπ)(ξ, ζ) =
1

2iπ
eσ̃(ζ−ξ)

∫
γR

dλ

2iπ

∫
γL

dμ

2iπ

eθ(λ,σ̃)−θ(μ,σ̃)

(μ− λ)(ξ − μ)(λ− ζ)
. (7.3.16)

All these kernels act on L2(iR).

With the convention that ρ, ζ, ξ ∈ iR and λ ∈ γR, μ ∈ γL, we have the following result.

Lemma 7.10. The operators in Lemma 7.9 can be represented as the composition of several

operators:

F(πKAiπ)(ξ, ζ) = A(ξ, μ)C(μ, λ)B(λ, ζ) (7.3.17)

A(ξ, μ) :=
e(μ−ξ)σ̃−

μ3

4

2iπ(ξ − μ)
C(μ, λ) :=

e
λ3−μ3

12

2iπ(μ− λ)
B(λ, ζ) :=

e
λ3

4
+(ζ−λ)σ̃

2iπ(λ− ζ)

F(Π̃K(τ,−τ)
Ai Π̃)(ξ, ζ) := Aj(ξ, μ)C(μ, λ)Bk(λ, ζ) (7.3.18)

Aj(ξ, μ) :=
∑
j

(−1)je(ξ−μ)ãj−μ3

12
+ τ

22/3
μ2

2iπ(ξ − μ)
Bk(λ, ζ) :=

∑
k

(−1)keλ3

12
− τ

22/3
λ2+(λ−ζ)ãk

2iπ(λ− ζ)

F(Π̃Aτπ)(ξ, ζ) := Hj(ξ, λ)QR(λ, ζ)− Aj(ξ, μ)C(μ, λ)B(λ, ζ) (7.3.19)

Hj(ξ, λ) :=
∑
j

(−1)j e
(ξ−λ)ãj−σ̃λ+λ3

12
+ τ

22/3
λ2

2iπ(ξ − λ)
, QR(λ, ζ) :=

e
λ3

12
+σ̃ζ

2iπ(λ− ζ)
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F(πAT
−τ Π̃)(ξ, ζ) := QL(ξ, μ)H̃k(μ, ζ)− A(ξ, μ)C(μ, λ)Bk(λ, ζ) (7.3.20)

H̃k(μ, ζ) :=
∑
k

(−1)k+1 e
(μ−ζ)ãk+μσ̃−μ3

12
− τ

22/3
μ2

2iπ(μ− ζ)
, QL(ξ, μ) :=

e−
μ3

12
−σ̃ξ

2iπ(ξ − μ)

with

B,Bk : L
2(iR)→ L2(γR)

A,Aj : L
2(γL)→ L2(iR)

C : L2(γR)→ L2(γL)

Hj : L
2(γR)→ L2(iR) QR : L2(iR)→ L2(γR)

QL : L2(γL)→ L2(iR) H̃k : L
2(iR)→ L2(γL)

Finally,

Proposition 7.11. The following identity of determinants holds

det

⎛⎜⎝Id−

⎡⎢⎣ ACB −QLH̃k + ACBk

−HjQR + AjCB AjCBk

⎤⎥⎦
⎞⎟⎠ = det

⎡⎢⎣ Id B Bk

AC Id QLH̃k

AjC HjQR Id

⎤⎥⎦ =

det

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IdL1 0 0 0 0 H̃k

0 IdR1 0 0 QR 0

0 0 IdL2 C 0 0

0 0 0 IdiR1 B Bk

−QL 0 −A 0 IdiR2 0

0 −Hj −Aj 0 0 IdiR3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
= det

⎡⎢⎢⎢⎢⎣
IdL1 H̃kHj H̃kAj 0

QRQL IdR1 QRA 0

0 0 IdL2 C

BQL BkHj BA+BkAj IdR2

⎤⎥⎥⎥⎥⎦ .

(7.3.21)

where by the IdXj
we denote the identity operator on L2(X,C) and the further subscript

distinguishes orthogonal copies of the same space.

Proof. We start by noticing that all operators introduced in Lemma 7.10 are Hilbert–

Schmidt. Since a product of two such operators is a trace class operator, the first two

determinants and the last one are ordinary Fredholm determinants; the third determinant

should be understood as Carleman regularized det2 determinant. However, since the opera-

tor whose determinant is computed is diagonal-free, the formal definition coincides with the
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usual Fredholm determinant. The first identity is seen by multiplying on the left by a proper

lower triangular matrix, while the second one is given by multiplying the matrix

M =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IdL1 0 0 0 0 0 H̃k

0 IdR1 0 0 0 QR 0

0 0 IdL2 0 C 0 0

0 0 0 IdR2 0 B Bk

0 0 0 0 IdiR1 0 0

−QL 0 −A 0 0 IdiR2 0

0 −Hj −Aj 0 0 0 IdiR3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
on the left by

N =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

IdL1 0 0 0 0 0 0

0 IdR1 0 0 0 0 0

0 0 IdL2 0 0 0 0

0 0 0 IdR2 0 0 0

0 0 0 0 IdiR1 0 0

QL 0 A 0 0 IdiR2 0

0 Hj Aj 0 0 0 IdiR3

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
where 0j is a copy of the imaginary axis iR. We now multiply the two matrices in reverse

order, as we know that det(MN ) = det(NM). In conclusion, we obtain the operator

det

⎡⎢⎢⎢⎢⎣
IdL1 H̃kHj H̃kAj 0

QRQL IdR1 QRA 0

0 0 IdL2 C

BQL BkHj BA+BkAj IdR2

⎤⎥⎥⎥⎥⎦
where we have removed the trivial part involving the three copies of iR.

Collecting all the results found so far, we have

Theorem 7.12. The gap probability of the tacnode process at single time is

det(Id−ΠK̃Π) = F2(σ̃)
−1 det (Id−M) (7.3.22)
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where

M :=

⎡⎢⎢⎢⎢⎣
0L1 −H̃kHj −H̃kAj 0

−QRQL 0R1 −QRA 0

0 0 0L2 −C
−BQL −BkHj −(BA+BkAj) 0R2

⎤⎥⎥⎥⎥⎦ (7.3.23a)

with

QRQL(λ, μ) =
e

λ3−μ3

12

2iπ(λ− μ)
, BQL(λ, μ) =

e
λ3

4
−λσ̃−μ3

12

2iπ(λ− μ)
(7.3.23b)

QRA(λ, μ) =
eμσ̃−

μ3

4
+λ3

12

2iπ(λ− μ)
, C(μ, λ) =

e
λ3−μ3

12

2iπ(μ− λ)
(7.3.23c)

H̃kHj(μ, λ) =

∑2K
j=1(−1)j+1h−1j (μ)hj(λ)

2iπ(μ− λ)
(7.3.23d)

H̃kAj(μ1, μ2) =
2K∑
j=1

(−1)j+1
h−1j (μ1)gj(μ2)

2iπ(μ1 − μ2)
(7.3.23e)

BkHj(λ2, λ1) =
2K∑
j=1

(−1)j g
−1
j (λ2)hj(λ1)

2iπ(λ2 − λ1)
(7.3.23f)

(BA+BkAj) (λ, μ) =
e

λ3−μ3

4
+(μ−λ)σ̃

2iπ(λ− μ)
+
∑
j

(−1)j g
−1
j (λ)gj(μ)

2iπ(λ− μ)
(7.3.23g)

and

hj(ζ) := e
ζ3/12+ τ

22/3
ζ2−(ãj+σ̃)ζ

, gj(ζ) := e
−ζ3/12+ τ

22/3
ζ2−ζãj . (7.3.23h)

Proof. The first three kernels and the kernel BA follow from easy computations.

QRQL(λ, μ) =

∫
iR

dζ

2iπ

e
λ3−μ3

12

2iπ(λ− ζ)(ζ − μ)
=

e
λ3−μ3

12

2iπ(λ− μ)

BQL(λ, μ) =

∫
iR

dζ

2iπ

e
λ3

4
−λσ̃−μ3

12

2iπ(λ− ζ)(ζ − μ)
=

e
λ3

4
−λσ̃−μ3

12

2iπ(λ− μ)

QRA(λ, μ) =

∫
iR

dζ

2iπ

eμσ̃−
μ3

4
+λ3

12

2iπ(λ− ζ)(ζ − μ)
=

eμσ̃−
μ3

4
+λ3

12

2iπ(λ− μ)

BA(λ, μ) =

∫
iR

dζ

2iπ

e
λ3−μ3

4
+(μ−λ)σ̃

2iπ(λ− ζ)(ζ − μ)
=

e
λ3−μ3

4
+(μ−λ)σ̃

2iπ(λ− μ)

Next, we recall that the endpoints are ordered ãj < ãj+1, so that we can pick up residues
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accordingly to the sign of ãj − ãk (j, k = 1, . . . , 2K).

H̃kHj(μ, λ) =
∑
j,k

(−1)j+k+1

∫
iR

dζ

2iπ
eζ(ãj−ãk)

e
μãk+μσ̃−μ3

12
− τ

22/3
μ2

2iπ(μ− ζ)

e
−λãj−σ̃λ+λ3

12
+ τ

22/3
λ2

(ζ − λ)
=

∑
j<k

(−1)j+k e
(μ−λ)ãk+(μ−λ)σ̃+λ3−μ3

12
+ τ

22/3
(λ2−μ2)

2iπ(μ− λ)
+
∑
k<j

(−1)j+k e
(μ−λ)ãj+(μ−λ)σ̃+λ3−μ3

12
+ τ

22/3
(λ2−μ2)

2iπ(μ− λ)
+

+
2K∑
j=1

e
(μ−λ)ãj+(μ−λ)σ̃+λ3−μ3

12
+ τ

22/3
(λ2−μ2)

2iπ(μ− λ)
.

Thanks to some cancellations, we are left with

H̃kHj(μ, λ) =
2K∑
j=1

(−1)j+1 e
(μ−λ)ãj+(μ−λ)σ̃+λ3−μ3

12
+ τ

22/3
(λ2−μ2)

2iπ(μ− λ)
.

Similarly,

BkAj(λ, μ) :=

∫
iR

dζ

2iπ

∑
k,j

(−1)k+je
λ3

12
− τ

22/3
λ2+(λ−ζ)ãk

2iπ(λ− ζ)

e
(ζ−μ)ãj−μ3

12
+ τ

22/3
μ2

(ζ − μ)
=

=
2K∑
j=1

(−1)jeλ3−μ3

12
− τ

22/3
(λ2−μ2)+(λ−μ)ãj

2iπ(λ− μ)
.

In the next computation, we set λ1, λ2 ∈ γR:

BkHj(λ2, λ1) =

∫
iR

dζ

2iπ

∑
k,j

(−1)k+je
λ32
12
− τ

22/3
λ2
2+(λ2−ζ)ãk

2iπ(λ2 − ζ)

e
(ζ−λ1)ãj−σ̃λ1+

λ31
12

+ τ

22/3
λ2
1

(ζ − λ1)
=

=
∑
j≤k

(−1)k+je
λ32
12
− τ

22/3
λ2
2−σ̃λ1+

λ31
12

+ τ

22/3
λ2
1

2iπ(λ2 − λ1)

(
e(λ2−λ1)ãj − e(λ2−λ1)ãk

)
;

the first term contributes only with the terms with even j (with positive sign) , the second

only those with odd k with a negative sign so that

BkHj(λ2, λ1) =
2K∑
j=1

(−1)je
λ32
12
− τ

22/3
λ2
2−σ̃λ1+

λ31
12

+ τ

22/3
λ2
1

2iπ(λ2 − λ1)
e(λ2−λ1)ãj .

Note that the kernel is regular at λ1 = λ2 because the sum vanishes.
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In a similar way

H̃kAj(μ1, μ2) =

∫
iR

dζ

2iπ

∑
k,j

(−1)k+j+1 e
(μ1−ζ)ãk+μ1σ̃−μ3

1
12
− τ

22/3
μ2
1

2iπ(μ1 − ζ)

e
(ζ−μ2)ãj−μ32

12
+ τ

22/3
μ2
2

(ζ − μ2)
=

=
∑
j≥k

(−1)k+j+1 e
μ1σ̃−μ31

12
− τ

22/3
μ2
1e
−μ32

12
+ τ

22/3
μ2
2

2iπ(μ1 − μ2)

(
e(μ1−μ2)ãk − e(μ1−μ2)ãj

)
=

=
2K∑
j=1

(−1)j+1 e
μ1σ̃−μ31

12
− τ

22/3
μ2
1−

μ3
2

12
+ τ

22/3
μ2
2

2iπ(μ1 − μ2)
e(μ2−μ1)ãj .

Now we recall that any operator acting on a Hilbert space of the type H = H1 ⊕H2 ⊕
H3 ⊕ H4 can be decomposed as a 4 × 4 matrix of operators with (i, j)-entry given by an

operator Hj → Hi. In conclusion, the kernel can be written as an integrable kernel in the

sense of Its-Izergin-Korepin-Slavnov ([50]):

M(ξ, ζ) =
f(ξ)T · g(ζ)
2πi(ξ − ζ)

(7.3.24)

with

f(ξ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

−e−ξ3/12χ
L2

−eξ3/4−ξσ̃χ
R2
− eξ

3/12χ
R1

g−11 (ξ)χ
R2
− h−11 (ξ)χ

L1

...

−(−1)2Kg−1
2K
(ξ)χ

R2
+ (−1)2Kh−1

2K
(ξ)χ

L1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
(7.3.25)

g(ζ) =

⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

eζ
3/12χ

R2

e−ζ
3/12χ

L1
+ e−ζ

3/4+ζσ̃χ
L2

g1(ζ)χL2
+ h1(ζ)χR1

...

g
2K
(ζ)χ

L2
+ h

2K
(ζ)χ

R1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦
. (7.3.26)

It is thus natural to associate to it the following RH problem. We refer to Section 3 for

a detailed explanation.

Proposition 7.13. The Fredholm determinant det(Id −M) is linked through IIKS corre-
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spondence to the following (2K + 2)× (2K + 2) Riemann-Hilbert problem

Γ+(λ) = Γ−(λ)J(λ), λ ∈ Σ := γL ∪ γR

Γ(λ) = I +O(λ−1), λ→∞ (7.3.27)

J(λ) := I − 2iπf(λ)g(λ)T = (7.3.28)⎡⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

1 e−Θσ̃χ
L

e−Θτ,−a1χ
L

. . . . . . e−Θτ,−a2Kχ
L

eΘσ̃χ
R

1 eΘ−τ,a1χ
R

. . . . . . eΘ−τ,a2Kχ
R

−eΘτ,−a1χ
R

e−Θτ,a1χ
L

1 . . . . . . 0
...

... 0 . . . . . .
...

...
... 0 . . . . . .

...

(−1)2KeΘ−τ,−a2Kχ
R

(−1)2K+1e−Θτ,a2Kχ
L

0 . . . . . . 1

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦
with

Θσ̃(λ) =
λ3

3
− σ̃λ, Θτ,ai(λ) =

λ3

6
− 2−

2
3 τλ2 − 2−

1
3 (ai + σ)λ. (7.3.29)

Proof. It is simply a matter of straightforward calculations: starting from the formula

J(λ) := I − 2iπf(λ)g(λ)T and writing explicitly the endpoints ãi as functions of the original

endpoints ai (the change of variables is defined in Proposition 7.5), we can get the jump ma-

trix as in (7.3.28), but with two distinct copies of γR and γL, as specified in (7.3.25)-(7.3.26).

On the other hand, it is easy to show that the jumps on - say - γR1 and γR2 commute, hence

we can identify the two contours.

In particular, let’s consider the simplest case where I = [a, b] (K = 1), then the RH

problem is 4× 4 with jump matrix

J(λ) =

⎡⎢⎢⎢⎢⎣
1 e−Θσ̃χ

L1
e−Θτ,−aχ

L2
e−Θτ,−bχ

L2

eΘσ̃χ
R1

1 eΘ−τ,aχ
R3

eΘ−τ,bχ
R3

−eΘτ,−aχ
R2

e−Θ−τ,aχ
L3

1 0

eΘτ,−bχ
R2

−e−Θ−τ,bχ
L3

0 1

⎤⎥⎥⎥⎥⎦ (7.3.30)

where

Θσ̃(λ) =
λ3

3
− σ̃λ, Θτ,ai(λ) =

λ3

6
− 2−

2
3 τλ2 − 2−

1
3 (ai + σ)λ. (7.3.31)

The contour configuration can be seen in Figure 7.6, where we have renamed the contours

R1, R2, R3 and L1, L2, L3).

We will now focus exclusively on the single-interval case and we will apply a steepest
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L3 L1 R1 R3R2L2

Figure 7.6: The contour configuration of the tacnode Riemann-Hilbert problem in the case
I = [a, b].

descent method in order to prove the factorization of the gap probability of tacnode process

into two gap probabilities of the Airy process. The starting point is the 4×4 Riemann-Hilbert

problem (7.3.30) with contour configuration as in Figure 7.8 or Figure 7.11, depending on

the scaling regime we are considering.

7.4 Proof of Theorem 7.2

From now on, we are assuming τ > 0. For τ ≤ 0 the calculations follow the same guidelines

as below.

The phase functions Θτ (λ,−b) and Θ−τ (λ, a) (appearing in the entries of the 2 × 2 off-

diagonal blocks of the jump matrix (7.3.30)) have inflection points with zero derivative when

the discriminant of the derivative vanishes, which occurs when

acrit + σ + τ 2 = 0, bcrit − σ − τ 2 = 0 (7.4.1)

with critical values Θτ (λ,−bcrit) = 21/3τ and Θ−τ (λ, acrit) = −21/3τ . The neighbourhood of
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t

xx= α

t=1

x= -α

x= β x= -β

σ +∞→

b(s)a(t)

Figure 7.7: The large separation case. As σ → +∞, the two bundles are pulled apart causing
the tacnode process to degenerate into two Airy processes.

the discriminant is parametrizable as follows

a = a(t) = −σ − τ 2 + t (7.4.2)

b = b(s) = σ + τ 2 − s. (7.4.3)

Thus, from (7.3.31) and substituting (7.4.2)-(7.4.3), we have the following expressions

Θτ (λ,−b) = ξ3−
3
− sξ− +

τ 3

3
− sτ, ξ− :=

λ− 2
1
3 τ

2
1
3

(7.4.4)

Θ−τ (λ, a) =
ξ3+
3
− tξ+ − τ 3

3
+ tτ, ξ+ :=

λ+ 2
1
3 τ

2
1
3

. (7.4.5)

On the other hand, the phase Θσ̃ in the entries (1, 2) and (2, 1) of (7.3.30) has critical

point at ±√σ̃ = ±
√
2

2
3σ.

Preliminary step. We conjugate the matrix Γ by the constant (with respect to λ) diagonal

matrix

D := diag(1, 1,−K(t),−K(s)) (7.4.6)
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where K(u) := τ3

3
−uτ . As a result, also the jump matrices (7.3.30) are similarly conjugated

and this has the effect of replacing the phases Θ±τ,∓a and Θ±τ,∓b by Θ±τ,∓a ∓ K(t) and

Θ±τ,∓b ∓K(s) respectively, so that their critical value is zero. We denote by a hat the new

matrix and respective jump:

Γ̂ := e−DΓeD Ĵ := e−DJeD. (7.4.7)

Thus, the resulting jump Ĵ has the following form:⎡⎢⎢⎢⎢⎣
1 e−Θσ̃ 0 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ on L1,

⎡⎢⎢⎢⎢⎣
1 0 0 0

eΘσ̃ 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ on R1, (7.4.8)

⎡⎢⎢⎢⎢⎣
1 0 e−Θτ,−a+K(t) e−Θ(ξ−,s)

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ on L2,

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

−eΘτ,−a−K(t) 0 1 0

eΘ(ξ−,s) 0 0 1

⎤⎥⎥⎥⎥⎦ on R2, (7.4.9)

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 0 0

0 e−Θ(ξ+,t) 1 0

0 −e−Θ−τ,b−K(s) 0 1

⎤⎥⎥⎥⎥⎦ on L3,

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 eΘ(ξ+,t) eΘ−τ,b+K(s)

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ on R3, (7.4.10)

where

Θ(ξ±, u) :=
ξ3±
3
− ξ±u ξ± :=

λ± 3
√
2τ

3
√
2

(7.4.11)

Θ−τ,b(λ, s) :=
λ3

6
+

τλ2

22/3
− 22/3σλ− τ 2λ

3
√
2
+

sλ
3
√
2

(7.4.12)

Θτ,−a(λ, t) :=
λ3

6
− τλ2

22/3
− 22/3σλ− τ 2λ

3
√
2
+

tλ
3
√
2
. (7.4.13)

We choose the contours according to the following configuration (see Figure 7.8):

• L2 and R2 are centred around the critical point PR := 2
1
3 τ

• L3 and R3 are centred around the critical point PL := −2 1
3 τ
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L2

PL
PR

Pσ,L Pσ,R

L1
R1

R3

R2

L3

Figure 7.8: The contour setting in the asymptotic limit as σ → +∞.

• L1 passes through the critical point Pσ,L := −√σ̃ and R1 passes through the critical

point Pσ,R :=
√
σ̃; these points are thought as very far from the origin, in the limit as

σ � 1.

Remark 7.14. All the left jumps commute with themselves and similarly all the right jumps.

Moreover, the jump matrices L2 and R3 commute.

The proof now proceeds along the following scheme (as σ → +∞):

1. the matrices L1 and R1 are exponentially close to the identity in every Lp norm (Lemma

7.15);

2. regarding the matrices L2 and R2, the entries of the form ±(Θτ,−a −K(t)) are expo-

nentially small in every Lp norm; the same behaviour will appear for the entries of the

type ±(Θ−τ,b +K(s)) in the matrices L3 and R3 (Lemma 7.16);

3. for the remaining entries in the jumps L2,3 and R2,3 we will explicitly and exactly solve

a (model) Riemann-Hilbert problem which will approximate the problem at hand.

7.4.1 Estimates on the phases

The proof of the first two points relies on the following lemmas.
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Lemma 7.15. The jumps on the curves L1 and R1 are exponentially suppressed in any Lp

norm, 1 ≤ p ≤ ∞, as σ → +∞.

Proof. A parametrization for the curves L1 andR1 is the following λ = ±21/3√σ+u
(

1
2
±
√
3
2
i
)
.

Therefore, we have (for both signs)

� [Θσ̃;R1 ] = � [−Θσ̃;L1 ] = −
4

3
σ3/2 −

√
σ

22/3
u2 − u3

3

which implies

∥∥eΘσ̃
∥∥p
Lp(R1)

= 2

∫ ∞

0

ep�[Θσ̃ ]du ≤ Ce−
4
3
pσ3/2

,
∥∥eΘσ̃

∥∥
L∞(R1)

= e−
4
3
σ3/2

. (7.4.14)

The same results holds for the contour L1.

Lemma 7.16. Given 0 < K1 < 1 fixed and s < K1(σ + τ 2), then the function eΘ(−τ,b)+K(s)

tends to zero exponentially fast in any Lp(R3) norm (1 ≤ p ≤ ∞) as σ → +∞:

∥∥eΘ(−τ,b)+K(s)
∥∥
Lp(R3)

≤ Ce−2τ(1−K1)σ. (7.4.15)

Similarly, the function e−Θ(−τ,b)−K(s) is exponentially small in any Lp(L3) norm (1 ≤ p ≤ ∞).

Moreover, the function e−Θτ,−a+K(t) and eΘτ,−a−K(t) are exponentially small in any Lp(L2)

and Lp(R2) norms, respectively (1 ≤ p ≤ ∞).

Proof. A parametrization of R3 is λ = 3
√
2τ + u

[
1
2
± 2√

3
i
]
, u ≥ 0. This yields

� [Θ(−τ, b) +K(s)] = −u3

6
− δu

2
4
3

− 2τσ − 2τ 3 + 2τδ

where we set s = 2σ + 2τ 2 − δ, 0 < δ < σ + τ 2, and this is valid for both branches of the

curve.

Regarding the Lp(R3) norms, we have that
∣∣eΘ−τ,b+K(s)

∣∣ = e�[Θ−τ,b+K(s)]; therefore,

∥∥eΘ(−τ,b)+K(s)
∥∥p
Lp(R3)

≤ 2Ce−2pτ(σ+τ2−δ)
[∫ 1

0

e−2
− 4

3 pδudu+

∫ ∞

1

e−p
u3

6 du

]
≤ Ce−2pτ(1−K1)σ (7.4.16a)∥∥eΘ(−τ,b)+K(s)

∥∥
L∞(R3)

= e−2τ(σ+τ2−δ) ≤ Ce−2τ(1−K1)σ (7.4.16b)

given that s < K1(σ + τ 2) with 0 < K1 < 1.

All the other cases are completely analogous.
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7.4.2 Global parametrix. The model problem

In this subsection we will use the Hasting-McLeod matrix (see [36], but in the normalization

of [11]) as parametrix for the RH problem related to Γ̂.

Let us consider the following model problem:⎧⎪⎨⎪⎩
Ω+(λ) = Ω−(λ)JR(λ) on L2 ∪R2

Ω+(λ) = Ω−(λ)JL(λ) on L3 ∪R3

Ω(λ) = I +O (λ−1) as λ→∞
(7.4.17)

with jumps (see Figure 7.9)

JR :=

⎡⎢⎢⎢⎢⎣
1 0 0 e−Θ(ξ−,s)χ

L2

0 1 0 0

0 0 1 0

eΘ(ξ−,s)χ
R2

0 0 1

⎤⎥⎥⎥⎥⎦ (7.4.18)

JL :=

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 eΘ(ξ+,t)χ
R3

0

0 e−Θ(ξ+,t)χ
L3

1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ (7.4.19)

and we recall ξ± := λ± 3√2τ
3√2

as defined in (7.4.11).

This model problem can be solved in exact form by considering two solutions of the

Hasting-McLeod Painlevé II RH problem, namely

ΦHM(s) and Φ̃HM(t) := σ3σ2ΦHM(t)σ2σ3, (7.4.20)

where σ2, σ3 are Pauli matrices and ΦHM(u) is the solution to a 2 × 2 RH problem with

jump matrix [
1 eΘ(λ,u)χγR

e−Θ(λ,u)χγL
1

]
, Θ(λ, u) =

λ3

3
− uλ (7.4.21)

and behaviour at infinity normalized to the identity 2× 2 matrix; as usual, γR is a contour

which extends to infinity along the rays arg(λ) = ± iπ
3
and γL = −γR (for more details see
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Figure 7.9: The contour setting with the jump matrices in the model problem.

[11]). The asymptotic behaviour of the functions (7.4.20) as ξ →∞ is

Φ(ξ+, t) = I +
1

ξ+

[
p(t) q(t)

−q(t) −p(t)

]
+O

(
1

ξ2+

)
(7.4.22)

Φ̃(ξ−, s) = σ3σ2

[
I +

1

ξ−

[
p(s) q(s)

−q(s) −p(s)

]
+O

(
1

ξ2−

)]
σ2σ3

= I +
1

ξ−

[
−p(s) −q(s)
q(s) p(s)

]
+O

(
1

ξ2−

)
. (7.4.23)

The global parametrix, i.e. the exact solution of the model problem, is then easily verified

to be given by

Ω :=

⎡⎢⎢⎢⎢⎣
Φ̃11(ξ−, s) 0 0 Φ̃12(ξ−, s)

0 Φ11(ξ+, t) Φ12(ξ+, t) 0

0 Φ21(ξ+, t) Φ22(ξ+, t) 0

Φ̃21(ξ−, s) 0 Φ̃22(ξ−, s)

⎤⎥⎥⎥⎥⎦ . (7.4.24)

7.4.3 Approximation and error term for the matrix Γ̂

The following relation holds

Γ̂ = E · Ω (7.4.25)

134



where E is the “error” matrix. The goal is to show that the RHP satisfied by the error

matrix has jump equal to a small perturbation of the identity matrix I + O(σ−∞), so that

a standard small norm argument can be applied (see Chapter 4).

Lemma 7.17. Given s, t < K1(σ + τ 2) with 0 < K1 < 1, the error matrix E = Γ̂(λ)Ω−1(λ)

solves a RH problem with jumps on the contours as indicated in Figure 7.8 and of the fol-

lowing orders {
E+(λ) = E−(λ)JE(λ) on Σ

E(λ) = I +O (λ−1) as λ→∞ (7.4.26)

JE =

⎡⎢⎢⎢⎢⎣
1 O(σ−∞)χ

L1
O(σ−∞)χ

L2
0

O(σ−∞)χ
R1

1 0 O(σ−∞)χ
R3

−O(σ−∞)χ
R2

0 1 0

0 −O(σ−∞)χ
L3

0 1

⎤⎥⎥⎥⎥⎦ (7.4.27)

and the O-symbols are valid in any Lp norms (1 ≤ p ≤ ∞).

Proof. First of all, we notice that, thanks to Lemma 7.15 and 7.16, all the extra phases that

were not included in the model problem Ω behave like O(σ−∞) as σ →∞ in any Lp norm.

The jump of the error problem are the remaining jumps appearing in the original Γ̂-problem

conjugated with the Hasting-McLeod solution Ω, which is independent on σ:

JE = Ω−1ĴΩ =

Ω−1

⎡⎢⎢⎢⎢⎣
1 e−Θσ̃χ

L1
e−Θτ,−a+K(t)χ

L2
0

eΘσ̃χ
R1

1 0 eΘ−τ,b+K(s)χ
R3

−eΘτ,−a−K(t)χ
R2

0 1 0

0 −e−Θ−τ,b−K(s)χ
L3

0 1

⎤⎥⎥⎥⎥⎦Ω

= Ω−1
(
I +O(σ−∞)

)
Ω = I +O(σ−∞)

since Ω and Ω−1 are uniformly bounded in σ.

We recall that the Small Norm Theorem says that

‖E(λ)− I‖ ≤ C

dist(λ,Σ)

(
‖JE − I‖1 +

‖JE − I‖22
1− ‖JE − I‖∞

)
(7.4.28)

uniformly on closed sets not containing the contours of the jumps, where Σ is the collection
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of all contours. Thanks to Lemma 7.17, we conclude

‖E(λ)− I‖ ≤ C

dist(λ,Σ)
e−Kσ (7.4.29)

for some positive constants C and K. The error matrix E is then found as the solution to

the integral equation

E(λ) = I +

∫
Σ

E−(w) (JE(λ)− I) dw

2πi(w − λ)
(7.4.30)

and can be obtained by iterations

E (0)(λ) = I, E (k+1)(λ) = I +

∫
Σ

E (k)
− (w) (JE(λ)− I) dw

2πi(w − λ)

and, thanks to Lemma 7.17 we have

E(λ) = I +
1

dist(λ,Σ)
O (

σ−∞
)
. (7.4.31)

7.4.4 Conclusion of the proof of Theorem 7.2

Using known results about Fredholm determinants of IIKS integrable kernels (see [9, Section

5] and [11, Section 2], in particular Theorem 2.1) and adapting them to the case at hand we

can state the following theorem.

Theorem 7.18. The Fredholm determinant det(Id−Π̂HΠ̂) of (7.3.6) satisfies the following

differential equations

∂ρ ln det(Id−Π̂HΠ̂) = ωJMU(∂ρ) =

∫
Σ

Tr
(
Γ−1− (λ)Γ′−(λ)∂ρΞ(λ)

) dλ

2πi
. (7.4.32)

More specifically,

∂s ln det(Id−Π̂HΠ̂) = − resλ=∞Tr
(
Γ−1Γ′∂sT

)
=

1
3
√
2λ

Γ1; (4,4) (7.4.33a)

∂t ln det(Id−Π̂HΠ̂) = − resλ=∞Tr
(
Γ−1Γ′∂tT

)
= − 1

3
√
2λ

Γ1; (3,3) (7.4.33b)

where Γ1 := limλ→∞ λ(Γ(λ)− I).

Proof. We notice that the original RHP for Γ (see (7.3.30)) is equivalent to a RH problem
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with constant jumps up to a conjugation with the matrix

T = diag
[κ
4
,−Θσ̃ +

κ

4
,−Θτ,−a +

κ

4
,−Θτ,−b +

κ

4

]
(7.4.34)

κ = Θσ̃ +Θτ,−a +Θτ,−b.

Thus, the matrix Ψ := ΓeT solves a RHP with constant jumps and it is (sectionally) a

solution to a polynomial ODE.

Applying the Theorem [11, Theorem 2.1] to the case at hand, we have the equality

(7.5.23). Moreover, using the Jimbo-Miwa-Ueno residue formula, we can explicitly calculate

∂s ln det(Id−Π̂HΠ̂) = − resλ=∞Tr
(
Γ−1Γ′∂sT

)
(7.4.35a)

∂t ln det(Id−Π̂HΠ̂) = − resλ=∞Tr
(
Γ−1Γ′∂tT

)
. (7.4.35b)

Taking into account the asymptotic behaviour at ∞ of the matrix Γ we have

Tr
[
Γ−1Γ′∂sT

]
= Tr

[(
−Γ1

λ2
+O (

λ−3
))(

∂sκ

4
I − ∂sΘτ,−bE4,4

)]
= − 1

3
√
2λ

Γ1; (4,4)

Tr
[
Γ−1Γ′∂tT

]
= Tr

[(
−Γ1

λ2
+O (

λ−3
))(

∂tκ

4
I − ∂tΘτ,−aE3,3

)]
= +

1
3
√
2λ

Γ1; (3,3)

since det Γ ≡ 1 which implies Tr Γ1 = 0.

We now use the exact formula in Theorem 7.18 to conclude the proof of Theorem 7.2;

recall that

Γ(λ) = eDE(λ)Ω(λ)e−D (7.4.36)

and thanks to Lemma 7.17 we have

Γ1 = eDΓ̂1e
−D = Ω1

(
I +O(σ−∞)

)

=
3
√
2

⎡⎢⎢⎢⎢⎣
−p(s) 0 0 −q(s)

0 p(t) q(t) 0

0 −q(t) −p(t) 0

q(s) 0 p(s)

⎤⎥⎥⎥⎥⎦(I +O(σ−∞)
)

(7.4.37)

which yields

Γ1; (4,4) = Ω1; (4,4) =
3
√
2p(s) +O(σ−∞) (7.4.38a)

Γ1; (3,3) = Ω1; (3,3) = − 3
√
2p(t) +O(σ−∞). (7.4.38b)
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Recall that p(u) is the logarithmic derivative of the gap probability for the Airy process (i.e

the Tracy-Widom distribution); collecting all the previous results, we have

ds,t ln det

(
Id−H

∣∣∣∣
[−σ−τ2+t,σ+τ2−s]

)
= p(s)ds + p(t)dt +O (

σ−∞
)
ds +O (

σ−∞
)
dt +O (

σ−∞
)
ds dt (7.4.39)

uniformly in s, t within the domain that guarantees the uniform validity of the estimates

above as per Lemma 7.17, namely, s, t < K1(σ + τ 2), 0 < K1 < 1.

We now integrate from (s0, t0) to (s, t) with s0 := a+σ+ τ 2, t0 = −b+σ+ τ 2 and we get

ln det

(
Id−H

∣∣∣∣
[−σ−τ2+t,σ+τ2−s]

)

= ln det

(
Id−KAi

∣∣∣∣
[s,+∞)

)
+ ln det

(
Id−KAi

∣∣∣∣
[t,+∞

)
+O(σ−1) + C (7.4.40)

with C = ln det

(
Id−H

∣∣∣∣
[a,b]

)
.

In conclusion,

det

(
Id−Ktac

∣∣∣∣
[−σ−τ2+t,σ+τ2−s]

)

=

eC det

(
Id−KAi

∣∣∣∣
[s,+∞)

)
det

(
Id−KAi

∣∣∣∣
[t,+∞

)
(1 +O(σ−1))

det

(
Id−KAi

∣∣∣∣
[σ̃,∞)

) (7.4.41)

On the other hand, the Fredholm determinant of the Airy kernel appearing in the denom-

inator tends to unity as σ → ∞, thus we only need to prove that the constant C is zero.

Indeed this is the case:

Lemma 7.19. The constant of integration C in (7.4.40) is zero.

Proof. We recall the definition of the integral operator Π̂HΠ̂ acting onH1⊕H2 = L2([σ̃,∞))⊕
L2([ã, b̃]), with kernel

Π̂HΠ̂ =

[
πKAiπ − 6

√
2πAT

−τ Π̃

− 6
√
2Π̃Aτπ

3
√
2Π̃K

(τ,−τ)
Ai Π̃

]
(7.4.42)
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where Π̂ := π ⊕ Π̃, π is the projector on [σ̃,+∞), Π is the projector on [ã, b̃] and

KAi(x, y) :=

∫ ∞

0

Ai(x+ u)Ai(y + u) du

K
(τ,−τ)
Ai (σ − x, σ − y) := eτ(y−x)×

×
∫ ∞

0

duAi(σ − x+ τ 2 +
3
√
2u)Ai(σ − y + τ 2 +

3
√
2u)

Aτ (x, y) := Ai(τ)(x− σ +
3
√
2y)−

∫ ∞

0

Ai(τ)(σ − x+
3
√
2v)Ai(v + y) dv

= 21/6eτ(x−σ+
3√2y)+ 2

3
τ3Ai(x− σ +

3
√
2y + τ 2)+

−21/6
∫ ∞

0

dv eτ(σ−x+
3√2v)+ 2

3
τ3Ai(σ − x+

3
√
2v + τ 2)Ai(v + y)

AT
−τ (x, y) := 21/6e−τ(y−σ+

3√2x)− 2
3
τ3Ai(y − σ +

3
√
2x+ τ 2)+

−21/6
∫ ∞

0

dv e−τ(σ−y+
3√2v)− 2

3
τ3Ai(σ − y +

3
√
2v + τ 2)Ai(v + x).

We would like to perform some uniform pointwise estimates on the entries of the kernel

in order to prove that as σ → +∞ the trace of the operator Π̂HΠ̂ tends to zero.

Indeed,

|πKAi(u, v)π| ≤ C1√
σ
e−

2
3
u3/2− 2

3
v3/2 (7.4.43a)

| 3
√
2ΠK

(τ,−τ)
Ai (x, y)Π̃| ≤ C2e

−σ3/2

(7.4.43b)

| 6
√
2Π̃Aτ (x, v)π| ≤ C3e

−τ2√σeτ(
3√2v−σ)− 2

3(
3√2v−σ+ã)

3/2

(7.4.43c)

| 6
√
2πAT

−τ (u, y)Π̃| ≤ C4e
−τ2√σe−τ(

3√2u−σ)− 2
3(

3√2u−σ+ã)
3/2

(7.4.43d)

for some positive constants Cj (j = 1, . . . , 4), where we used the convention that x, y are the

variables running in [ã, b̃] and u, v are the variables running in [σ̃,∞). Such estimates follow

from simple arguments on the asymptotic behaviour of the Airy function when its argument

is very large.

Collecting all the estimates, we get[
πKAiπ − 6

√
2πAT

−τ Π̃

− 6
√
2Π̃Aτπ Π̃K

(τ,−τ)
Ai Π̃

]
≤ Cσ

[
f(u)f(v) f(u)

f(v) 1

]
(7.4.44)

with Cσ =
max{Cj , j=1,...,4}√

σ
and f(z) = eτ(

3√2u−σ)− 2
3(

3√2u−σ−2−1/3σ+2−1/3a)
3/2

. On the right hand

side we have a new operator L acting on the same Hilbert space L2([σ̃,∞))⊕L2([ã, b̃]) with
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t

xx= α

t=1

x= -α

x= β x= -β

[atac, btac]

τ ∞→

b(s)a(t)

Figure 7.10: The large time case. As τ → +∞, we are physically moving away form the
tacnode point and along the soft edges of the boundary, where the Airy process occurs. The
same result holds when τ → −∞.

trace

TrL = ‖f‖2L2(σ̃,∞) + (b̃− ã) ≤ C(b− a) (7.4.45)

for some positive constant C, since ‖f‖2L2(σ̃,∞) → 0 as σ → +∞.

Concluding, keeping [a, b] fixed,

| ln det(Id−Π̂HΠ̂)| =
∞∑
n=1

Tr (Π̂HΠ̂n)

n

≤
∞∑
n=1

Cn
σ (b− a)n

n
≤ Cσ(b− a)

1− Cσ(b− a)
→ 0 (7.4.46)

as σ → +∞. This implies that the constant of integration C must be zero.

7.5 Proof of Theorem 7.3

We deal now with the case τ → ±∞, i.e. we are moving away from the tacnode point along

the boundary curves of the domain so that there is one of the gaps that divaricates as we

proceed. From now on, we will only focus on the case τ → +∞. The case τ → −∞ is

analogous.
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The RH problem we are considering is the same as for the proof of Theorem 7.2 (7.3.27)-

(7.3.30). We conjugates the jumps with the constant diagonal matrix D (see definition

(7.4.6)) and we have the same jump matrices as in (7.4.8)-(7.4.13).

The position of the curves is depicted in Figure 7.11:

• L2 and R2 are centred around the critical point PR := 2
1
3 τ

• L3 and R3 are centred around the critical point PL := −2 1
3 τ

• L1 passes through the critical point Pσ,L := −√σ̃ and R1 passes through the critcal

point Pσ,R :=
√
σ̃.

The points PR/L = ±2 1
3 τ are thought as very far from the origin, in the limit as τ � 1.

We need to perform certain “contour deformations” and ”jump splitting” in the RHP

(7.3.27)-(7.3.30). To explain these manipulation consider a general RHP with a jump on a

certain contour γ0 and with jump matrix J(λ)

Γ+(λ) = Γ−(λ)J(λ) , λ ∈ γ0.

The “contour deformation” procedure stands for the following; suppose γ1 is another contour

such that

• γ0 ∪ γ−11 is the positively oriented boundary of a domain Dγ0,γ1 , where γ−11 stands for

the contour traversed in the opposite orientation,

• J(λ) and J−1(λ) are both analytic in Dγ0,γ1 and (in case the domain extends to infinity)

J(λ)→ I +O(λ−1) as |λ| → ∞, λ ∈ Dγ0,γ1 .

We define Γ̃(λ) = Γ(λ) for λ ∈ C \Dγ0,γ1 and Γ̃(λ) = Γ(λ)J(λ)−1 for λ ∈ Dγ0,γ1 . This new

matrix then has jump on γ1 with jump matrix J(λ) (λ ∈ γ1) and no jump (i.e. the identity

jump matrix) on γ0. While technically this is a new Riemann Hilbert problem, we shall

refer to it with simply as the “deformation” of the original one, without introducing a new

symbol.

The “jump splitting” procedure stands for a similar manipulation: suppose that the

jump matrix relative to the contour γ0 is factorizable into two (or more) matrices J(λ) =

J0(λ)J1(λ). Let γ1, Dγ0,γ1 be exactly as in the description above. Then define Γ̃(λ) = Γ(λ)

for λ ∈ C \Dγ0,γ1 and Γ̃(λ) = Γ(λ)J(λ)−1 for λ ∈ Dγ0,γ1tacnode. Then Γ̃ has jumps

Γ̃+(λ) = Γ̃−(λ)J0(λ), λ ∈ γ0, Γ̃+(λ) = Γ̃−(λ)J1(λ), λ ∈ γ1.
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J̃2

L3

Pσ,RPσ,L

PR

R3 L2 R2

L1 R1

J3

J2

PL

J̃3

Figure 7.11: The contour setting in the asymptotic limit as τ → +∞.

Also in this case, while this is technically a different RHP, we shall refer to it with the same

symbol Γ. We will also refer to the inverse operation as “jump merging”.

With this terminology in mind, we deform R3 on the left next to its critical point − 3
√
2τ

leads to a new jump matrix on R3, due to conjugation with the curve L1 (similarly for L2)

J3 := L1R3L
−1
1 = R1L2R

−1
1 =: J2

=

⎡⎢⎢⎢⎢⎣
1 0 e−Θ(τ,−a)+K(t) e−Θ(ξ−,s)

0 1 eΘ(ξ+,t) eΘ(−τ,b)+K(s)

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ . (7.5.1)

Again as before, the proof is based on estimating the phases in the jump matrices which

are not critical and solving the RH problem by approximation with an exact solution to a

model problem.

7.5.1 Estimates of the phases

First of all we notice that a similar version of Lemma 7.15 does not apply here, since the

phases on the contours L1 and R1 do not depend on τ . On the other hand, we can partially
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restate Lemma 7.16 applied to the case at hand when τ →∞.

Lemma 7.20. Given 0 < K1 < 1 fixed and s < K1(σ + τ 2), then the function eΘ(−τ,b)+K(s)

tends to zero exponentially fast in any Lp(R3) norm (1 ≤ p ≤ ∞) as τ → +∞:

∥∥eΘ(−τ,b)+K(s)
∥∥
Lp(R3)

≤ Ce−2(1−K1)τ3 (7.5.2)

Similarly, the functions e−Θ(−τ,b)−K(s), eΘτ,−a−K(t) and e−Θτ,−a+K(t) are exponentially small

in any Lp(L3), L
p(R2) and Lp(L2) norms, respectively (1 ≤ p ≤ ∞).

Proof. Using the same parametrization as in Lemma 7.16, we have

∥∥eΘ(−τ,b)+K(t)
∥∥p
Lp(R3)

≤ 2Ce−2pτ(σ+τ2−δ)
[∫ 1

0

e−2
− 4

3 δpudu+

∫ ∞

1

e−p
u3

6 du

]
≤ Ce−2p(1−K1)τ3 (7.5.3a)∥∥eΘ(τ,b)−K(t)

∥∥
L∞(R3)

= e−2τ(σ+τ2−δ) ≤ Ce−2(1−K1)τ3 (7.5.3b)

where we set s = 2σ + 2τ 2 − δ, 0 < δ < σ + τ 2. The proof for the other phases on the

contours L3, R2 and L2 is analogous.

Before estimating the entries of the jump matrices on J2 and J3, we factor the jumps in

the following way. We split the jump J2 into two jumps (and two curves): with abuse of

notation we call the first one J2 and we merge the second jump with the jump on R1. Thus,

the new jumps are the following (see Figure 7.11)

J2 =

⎡⎢⎢⎢⎢⎣
1 0 e−Θ(τ,−a)+K(t) e−Θ(ξ−,s)

0 1 eΘ(ξ+,t) 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ (7.5.4)

J̃2 =

⎡⎢⎢⎢⎢⎣
1 0 0 0

eΘσ̃ 1 0 −eΘ(−τ,b)+K(s)

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ . (7.5.5)

Analogously, we split the jump J3 into two jumps: we call the first one again J3 and

we merge the second one with the jump on L1. The new configuration of jump matrices is
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illustrated in Figure 7.11.

J3 =

⎡⎢⎢⎢⎢⎣
1 0 0 e−Θ(ξ−,s)

0 1 eΘ(ξ+,t) eΘ(−τ,b)+K(s)

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ (7.5.6)

J̃3 =

⎡⎢⎢⎢⎢⎣
1 e−Θσ̃ e−Θ(τ,−a)+K(t) 0

0 1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ . (7.5.7)

Lemma 7.21. Let κ := 8
3
− p

6
. Given 0 < K2 < 1 fixed and t = 4τ 2−δ, 0 < δ ≤ K2κτ

2, then

the (1, 3) and (2, 3) entries of the jump matrix J2 are exponentially suppressed as τ → +∞
in Lp norms with p = 1, 2,+∞.

Given 0 < K3 < 1 fixed and s = τ 2 + 2σ − δ, 0 < δ ≤ K3

(
2σ + 2

3
τ 2
)
, the (2, 4) entry of

J̃2 is exponentially suppressed in any Lp norm (1 ≤ p ≤ ∞).

Similarly, the same results hold true for the (1, 4) and (2, 4) entries of J3 and for the

(1, 3) entry of J̃3.

Proof. The first row on J2 is the same as the one on L2 and the entry e−Θ(τ,−a)+K(t) is

exponentially suppressed in any Lp norm, thanks to Lemma 7.20.

Regarding the remaining term on the second row, the real part of the argument in the

exponent is

� [Θ(ξ+, t)] =
u3

6
− τ

22/3
u2 − δ

2 3
√
2
u− 16

3
τ 3 + 2τδ

where we set t = 4τ 2 − δ, δ > 0.

Remark 7.22. A parametrization for the curve J2 is λ = 3
√
2τ + u

[
1
2
± 2√

3
i
]
, u ∈ [0, 3

√
2τ ].

When u = 3
√
2τ , the curve J2 hits the curve R1 and for u > 3

√
2τ the contour L2 appears.

Provided δ < κτ 2 (κ := 8
3
− p

6
), it is straightforward to compute the Lp norms (1 ≤ p < 16)
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∥∥eΘ(ξ+,t)
∥∥p
Lp(J2)

= 2e−2pτ(
8
3
τ2−δ)

∫ 3√2τ

0

e
p

(
u3

6
− τ

22/3
u2− δ

2 3√2
u

)
du

≤ Ce−2pτ[(
8
3
− p

6)τ2−δ]
[∫ ∞

1

e
− pτ

22/3
u2

du+

∫ 1

0

e
− pδ

2 3√2
u
du

]
≤ Ce−2pκ(1−K2)τ3 (7.5.8a)∥∥eΘ(ξ+,t)

∥∥
L∞(J2)

= e−
16
3
τ3+2τδ ≤ Ce−2[κ(1−K2)+16]τ3 (7.5.8b)

for some suitable 0 < K2 < 1.

The phase on J̃2 behaves like

� [Θ(−τ, b) +K(s)] = −u3

6
− τ

2 22/3
u2 − δ

2 21/3
u− 2

3
τ 3 − 2τσ + τδ

where we set s = τ 2 + 2σ − δ, δ > 0. Thus, provided δ < 2σ + 2
3
τ 2, the Lp norms are

∥∥eΘ(−τ,b)+K(s)
∥∥p
Lp(J̃2)

= 2e−pτ(
2
3
τ2+2σ−δ)

∫ 3√2τ

0

e
−p

(
u3

6
+ τ

2 22/3
u2+ δ

2 21/3
u
)
du

≤ Ce−pτ(
2
3
τ2+2σ−δ)

[∫ 1

0

e
− pδ

2 21/3
u
du+

∫ ∞

1

e−p
u3

6 du

]
≤ Ce−p(1−K3)τ3 (7.5.9a)∥∥eΘ(−τ,b)+K(s)

∥∥
L∞(J̃2)

= e−
2
3
τ3−2τσ+τδ ≤ e−C(1−K3)τ3 (7.5.9b)

for some suitable 0 < K3 < 1.

The arguments for J3 and J̃3 are analogous.

7.5.2 Global parametrix. The model problem

We will now define a new “model” RH problem which will eventually approximate the

solution to our original problem Γ̂.

We define the following RH problem:⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
Ω+(λ) = Ω−(λ)JAi(λ) on L1 ∪R1

Ω+(λ) = Ω−(λ)JR(λ) on L2 ∪R2

Ω+(λ) = Ω−(λ)JL(λ) on L3 ∪R3

Ω(λ) = I +O (λ−1) as λ→∞

(7.5.10)
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with jumps

JAi :=

⎡⎢⎢⎢⎢⎣
1 e−Θσ̃χ

L1
0 0

eΘσ̃χ
R1

1 0 0

0 0 1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ (7.5.11a)

JR :=

⎡⎢⎢⎢⎢⎣
1 0 0 e−Θ(ξ−,s)χ

L2

0 1 0 0

0 0 1 0

eΘ(ξ−,s)χ
R2

0 0 1

⎤⎥⎥⎥⎥⎦ (7.5.11b)

JL :=

⎡⎢⎢⎢⎢⎣
1 0 0 0

0 1 eΘ(ξ+,t)χ
R3

0

0 e−Θ(ξ+,t)χ
L3

1 0

0 0 0 1

⎤⎥⎥⎥⎥⎦ . (7.5.11c)

Let’s denote by Ψa,b the 4× 4 solution to the Airy RHP related to the submatrix formed

by the a-th row and column and by the b-th row and column. In particular, we call Ψ1,2 the

matrix solution to the Hasting-McLeod Airy RHP for the minor (1, 2), related to the jump

JAi, with asymptotic solution

Ψ1,2(σ̃) = I4×4 +
1

λ

⎡⎢⎢⎢⎢⎣
−p(σ̃) −q(σ̃) 0 0

q(σ̃) p(σ̃) 0 0

0 0 0 0

0 0 0 0

⎤⎥⎥⎥⎥⎦+O
(

1

λ2

)
. (7.5.12)

We consider now the matrix Ξ := Ω ·Ψ−11,2(σ̃). This matrix doesn’t have jumps on L1 and R1

by construction, but still has jumps on L2, R2 and L3, R3:

J̃L := Ψ1,2JLΨ
−1
1,2 and J̃R := Ψ1,2JRΨ

−1
1,2. (7.5.13)

On the other hand, as τ → +∞ the critical points ± 3
√
2τ as well as the curves L2, R2, L3,

R3 go to infinity, while the matrix Ψ1,2 is asymptotically equal to the identity matrix.

We are left with

Ξ = E1 ·Ψ2,3(t) ·Ψ1,4(s) (7.5.14)

where Ψ2,3 and Ψ1,4 where defined in (7.4.20) and E1 is the error matrix.
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Following the previous remark, it is easy to show that the error matrix E1 is a sufficiently

small perturbation of the identity and therefore we can apply the Small Norm Theorem and

approximate the global parametrix Ω by simply the product of the matrices Ψa,b ((a, b) =

(1, 2), (2, 3), (1, 4))

Ω = Ξ ·Ψ1,2(σ̃) ∼ Ψ2,3(t) ·Ψ1,4(s) ·Ψ1,2(σ̃). (7.5.15)

7.5.3 Approximation and error term for the matrix Γ̂

The relation between our original RH problem Γ̂ and the global parametrix Ω is the following

Γ̂ = E2 · Ω := E2 ·Ψ2,3(t) ·Ψ1,4(s) ·Ψ1,2(σ̃) (7.5.16)

where E2 is again an error matrix, to which we will apply the small norm argument once

again (Chapter 4).

Lemma 7.23. In the estimates on s, t stated in Lemmas 7.20 and 7.21, the error matrix

E = Γ̂(λ)Ω−1(λ) solves a RH problem with jumps on the contours as indicated in Figure 7.11

and of the following orders {
E+(λ) = E−(λ)JE(λ) on Σ

E(λ) = I +O (λ−1) as λ→∞ (7.5.17)

JE = (7.5.18)⎡⎢⎢⎢⎢⎣
1 0 O(τ−∞)χ

L2
+O(τ−∞)χ

J̃3
O(τ−∞)χ

J3

0 1 O(τ−∞)χ
J2

O(τ−∞)χ
R3

+O(τ−∞)χ
J̃2

O(τ−∞)χ
R2

0 1 0

0 O(τ−∞)χ
L3

0 1

⎤⎥⎥⎥⎥⎦
where Σ is the collection of all contours and the O-symbols are valid for L1, L2 and L∞

norms.

Proof. Due to Lemmas 7.20 and 7.21, we know from the estimates above that all the extra

phases that appear in the original RH problem for Γ̂ are bounded by an expontential function

of the form C1e
−C2τ3 . The jumps of the error problem are the remaining jumps appearing

in the Γ̂-problem conjugated with the global parametrix Ω:

JE = Ω−1
(
I +O(τ−∞)

)
Ω = I +O(τ−∞). (7.5.19)

The last equality follows from the fact that the solution Ω depends on τ with a growth that

is smaller than the bound C1e
−C2τ3 that we have for the phases.
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Thus, the Small Norm Theorem can be applied

‖E(λ)− I‖ ≤ C

dist(λ,Σ)

(
‖JE − I‖1 +

‖JE − I‖22
1− ‖JE − I‖∞

)
≤ C

dist(λ,Σ)
e−Kτ (7.5.20)

where Σ is the collection of all contours, for some positive constants C and K. The error

matrix E is then found as the solution to an integral equation and, thanks to Lemma 7.23

we have

E(λ) = I +
1

dist(λ,Σ)
O (

τ−∞
)
. (7.5.21)

We need the first coefficient Γ̂1 = Γ̂1(s, t, σ̃) of Γ̂(λ) at λ = ∞ and how it compares to

the corresponding coefficient Ω1 of Ω(λ); the error analysis above shows that

Γ̂1 = Ω1 +O
(
τ−∞

)
. (7.5.22)

7.5.4 Conclusion of the proof of Theorem 7.3

Theorem 7.24. The Fredholm determinant det(Id−Π̂HΠ̂) is equal to the Jimbo-Miwa-Ueno

isomonodromic τ -function of the RH problem (7.3.30). For any parameter ρ on which the

integral operator Π̂HΠ̂ may depend, we have

∂ρ ln det(Id−Π̂HΠ̂) = ωJMU(∂ρ) =

∫
Σ

Tr
(
Γ−1− (λ)Γ′−(λ)∂ρΞ(λ)

) dλ

2πi
. (7.5.23)

More specifically,

∂σ̃ ln det(Id−Π̂HΠ̂) = − resλ=∞Tr
(
Γ−1Γ′∂σ̃T

)
=

1

λ
Γ1; (2,2) (7.5.24a)

∂t ln det(Id−Π̂HΠ̂) = − resλ=∞Tr
(
Γ−1Γ′∂tT

)
= − 1

3
√
2λ

Γ1; (3,3) (7.5.24b)

∂s ln det(Id−Π̂HΠ̂) = − resλ=∞Tr
(
Γ−1Γ′∂sT

)
=

1
3
√
2λ

Γ1; (4,4) (7.5.24c)

where Γ1 := limλ→∞ λ(Γ(λ)− I).

Proof. The first part of the Theorem is the same as Theorem 7.18. Then, using the Jimbo-

Miwa-Ueno residue formula, we have

∂ρ ln det(Id−Π̂HΠ̂) = − resλ=∞Tr
(
Γ−1Γ′∂ρT

)
(7.5.25)

with ρ = σ̃, s, t.
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Taking into account the definition of the conjugation matrix T (see (7.4.34)) and the

asymptotic behaviour of the matrix Γ at infinity, we get again

Tr
[
Γ−1Γ′∂σ̃T

]
= −Γ1; (2,2)

λ
, Tr

[
Γ−1Γ′∂sT

]
= −Γ1; (4,4)

3
√
2λ

, Tr
[
Γ−1Γ′∂tT

]
=

Γ1; (3,3)

3
√
2λ

.

On the other hand, thanks to Lemma 7.23 and the Small Norm Theorem, we can ap-

proximate the solution Γ with the global parametrix Ω using (7.5.22) and we get

d ln det

(
Id−H

∣∣∣∣
[−σ−τ2+s,σ+τ2−t]

)
=

p(s)ds+ p(t)dt+ p(σ̃)dσ̃ +O (
τ−∞

)
ds+O (

τ−∞
)
dt+O (

τ−∞
)
dσ̃

+O (
τ−∞

)
ds dt+O (

τ−∞
)
ds dσ̃ +O (

τ−∞
)
dt dσ̃ +O (

τ−∞
)
ds dt dσ̃. (7.5.26)

Integrating from a fixed point (s0, t0, σ̃0) up to (s, t, σ̃),

det

(
Id−Ktac

∣∣∣∣
[−σ−τ2+t,σ+τ2−s]

)
=

eC det

(
Id−KAi

∣∣∣∣
[s,+∞)

)
det

(
Id−KAi

∣∣∣∣
[t,+∞)

)
det

(
Id−KAi

∣∣∣∣
[σ̃,∞)

)
(1 +O(τ−1))

det

(
Id−KAi

∣∣∣∣
[σ̃,∞)

)

= eC det

(
Id−KAi

∣∣∣∣
[s,+∞)

)
det

(
Id−KAi

∣∣∣∣
[t,+∞)

)(
1 +O(τ−1)

)
with s, t within the domain that guarantees the uniform validity of the estimates above (see

Lemmas 7.20 and 7.21) and C = ln det(Id−Hχ[−σ0−τ2+t0,σ0+τ2−s0]).

Finally, we need again to show that the constant of integration C is equal zero.

Lemma 7.25. The constant of integration C in the formula (7.5.4) is zero.
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Proof. First of all we notice that (see Lemma 7.6)

det(Id−ΠKtacΠ) =
det

(
Id−Π̂HΠ̂

)
det (Id−πKAiπ)

= det

([
(Id− πKAiπ)

−1 0

0 Id

]
·
[

Id− πKAiπ
6
√
2πAT

−τ Π̃
6
√
2Π̃Aτπ Id− 3

√
2Π̃K

(τ,−τ)
Ai Π̃

])

= det

(
Id−

[
0 − 6

√
2(Id− πKAiπ)

−1πAT
−τ Π̃

− 6
√
2Π̃Aτπ

3
√
2Π̃K

(τ,−τ)
Ai Π̃

])
(7.5.27)

where Π̂ := π ⊕ Π̃, π is the projector on [σ̃,∞) and Π is the projector on [ã, b̃].

Along the same guidelines as the proof of Lemma 7.19, we will perform some uniform

estimates on the entries of the kernel that will lead to the desired result.

We have ∣∣∣ 3
√
2Π̃K

(τ,−τ)
Ai (u, v)Π̃

∣∣∣ ≤ C

τ
e−

4
3
τ3−2τσ+2τv ≤ C1√

τ
(7.5.28a)∣∣∣ 6

√
2Π̃Aτ (x, v)π

∣∣∣ ≤ C2√
τ

(7.5.28b)∣∣∣ 6
√
2(Id− πKAiπ)

−1πAT
−τ (u, y)Π̃

∣∣∣ ≤ CAie
− 4

3
τ3
[
e−2τ(y−σ+

3√2u) +
e2τ(y−σ)

2 3
√
2τ

]
= CAie

− τ3

3

[
e−τ

3−2τ(y−σ+ 3√2u) +
e−τ

3+2τ(y−σ)

2 3
√
2τ

]

≤ C3√
τ
e−τ(u−σ) (7.5.28c)

for some positive constants Cj (j = 1, 2, 3), where the variables x, y run in [ã, b̃] and u, v run

in [σ̃,∞). Such estimates follow again from simple arguments on the asymptotic behaviour

of the Airy function when its argument is very large. Moreover, the resolvent of the Tracy-

Widom distribution is uniformly bounded and independent on τ ; here is the reason for the

constant CAi.

Collecting the above estimates, we have[
0 − 6

√
2(Id− πKAiπ)

−1πAT
−τ Π̃

− 6
√
2Π̃Aτπ

3
√
2Π̃K

(τ,−τ)
Ai Π̃

]
≤ Cτ

[
0 f(u)

1 1

]
(7.5.29)

with Cτ :=
max{Cj , j=1,2,3}√

τ
and f(u) = e−τ(u−σ). On the right hand side, we have a new

150



operator M acting on L2([σ̃,∞))⊕ L2([ã, b̃])) with bounded trace

TrM≤ Ĉ
(
‖f‖2L2(σ̃,∞) + (b̃− ã)

)
≤ Ĉ(b− a) (7.5.30)

for some positive constant Ĉ, since ‖f‖2L2(σ̃,∞) → 0 as τ → +∞.

Concluding, having [a, b] fixed,

| ln det(Id−ΠKtacΠ)| =
∞∑
n=1

Tr (ΠKtacΠ)n

n
≤

∞∑
n=1

Cn
τ Ĉ

n(b− a)n

n

≤
∞∑
n=1

Cn
τ Ĉ

n(b− a)n =
Cτ Ĉ(b− a)

1− Cτ Ĉ(b− a)
→ 0 (7.5.31)

as τ → +∞.

Therefore, the constant of integration is equal zero.

7.6 Conclusions and future developments

In this last chapter we showed how gap probabilities of the critical tacnode process can degen-

erate, under appropriate scaling regimes, into a product of two independent gap probabilities

of the Airy process.

The first connections between the critical configuration of non-intersecting Brownian

paths (see Figure 7.3) and the Hastings-McLeod solution to the Painlevé II equation, which

describes the Airy gap probability, were established in the papers [28] and [75]. In particular,

in the latter paper, the local distribution of the particles along the soft edges, afar from the

tacnode critical point, was considered, in the limit as the two disjoint bundles touch each

other tangentially. More interesting is the first paper, where a similar setting was considered:

given two independent bundles of non-intersecting Brownian paths that under certain limit

conditions touches tangentially at a critical point (the tacnode), the authors define a 4 × 4

Riemann-Hilbert problem which describes the tacnode kernel. Moreover, the residue matrix

in the asymptotic series at infinity of such Riemann-Hilbert problem shows the presence of

the Hastings-McLeod solution of Painlevé II. However, this connection, though remarkable,

is mostly a hint that the tacnode process is somehow related to the Airy one through an

appropriate limiting configuration.

In our work, on the other hand, we systematically prove the degeneracy in the setting as

the two tangential bundles are pushed afar (σ → +∞; the opposite of the limiting procedure

in [28] and [75]) and, moreover, in the new setting as we move away from the tacnode

singularity along the soft edges of the bundles (τ → ±∞).
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The Riemann-Hilbert formulation given in Proposition 7.13 (Section 7.3) may allow the

study of another type of asymptotics of gap probabilities: the degeneration of the tacnode

gap probability into the Pearcey gap probability. Physically, we can picture this transition

by pushing the two touching ellipses further close so that they would merge; the soft edges

would collapse and give rise to two cusp singularities, where the Pearcey process will appear.

The scaling limit one need to perform in this situation is allowing the pressure parameter

σ to diverge at −∞ and the local time τ to be a function of σ itself (this is a natural as-

sumption, since, as the two bundles get closer and closer, the cusps move vertically away

from the original tacnode point). The conjectured asymptotic regime, supported by numer-

ical evidences, has been stated in [12, Section 3.1]. Since the Riemann-Hilbert problem for

the Pearcey gap probabilities ([11]) shows a quartic phase in the jump matrix, while the

phase in the tacnode case is a cubic, the asymptotic study may require the introduction

of a g-function (see Chapter 4) in order to apply the Deift-Zhou steepest descent method.

However, we recall that such degeneration has already been proved by Geudens and Zhang

in [43].

Another direction that would lead to completely new results is the derivation of differ-

ential equations describing the τ -function associated with the tacnode gap probability. This

problem has never been addressed before in the literature and, starting form the Riemann-

Hilbert formulation given in our work, it could be a natural future development.

Throughout this chapter, we have only focused on the single-time tacnode process. How-

ever, it can be of great interest also the study of its multi-time version (see for example [4]

for its definition). It has already been proved in [12] that the gap probability of the Ex-

tended (multi-time) tacnode process can be expressed as ratio of two Fredholm determinants

of explicit, not transcendental integral operators. The main challenge still remains, i.e. the

formulation of a Riemann-Hilbert problem derived from a suitable IIKS integrable opera-

tor which will allow either the study of asymptotic behaviour or the study of differential

equations associated with the gap probabilities.

As final note, we would like to gratefully acknowledge Dr. Bertola and Dr. Cafasso for

their fundamental calculations in Section 7.3, without which the present work would not

have been possible.
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Chapter 8

Conclusions

In this thesis we tackled the problem of studying gap probabilities of specific determinantal

point processes of recent interest.

The first important contribution, that affects all the three works presented in the thesis,

is the further development of the method introduced by Bertola and Cafasso in [10] and

[11], to use the isomonodromic τ -function and Riemann-Hilbert techniques to study such

gap probabilities. This approach, compared with earlier ones by, for instance, Tracy and

Widom ([100], [101]), Adler and Van Moerbeke et al. ([5]), Forrester and Witte ([40]), Basor

and Chen et al. ([8]), has the advantage of being more systematic.

The “Fourier” method, that has been extensively used in the previous chapters, has been

originally applied on the universal kernels of Airy and Pearcey ([10] and [11]) and it has

now been successfully applied to other instances of universal kernels. The key point is not

so much that the given kernel itself is “integrable” in the IIKS sense, but that the Fourier

transform of its restriction to an interval is; the main signal (but not the exclusive one, see

e.g. the tacnode kernel) is the double-integral representation with a denominator, as it is

the case for the Airy kernel (see [11])

KAi(x, y) =

∫
γR

dμ

2πi

∫
γL

dλ

2πi

e
μ3

3
−xμ−λ3

3
+yλ

λ− μ
. (8.0.1)

In our work we first considered the case of the limiting gap probability in the so called

“hard edge” of the random matrix theory, characterized by the Bessel kernel. We showed that

this gap probability can be expressed in term of the isomonodromic τ function associated to

a suitable Riemann-Hilbert problem. Generally the result is not in a simple form; however,

in a special case, further simplification is possible and we were able to find a relation to a

Painlevé III transcendent. This relation is not new, and was originally derived by Tracy and
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Widom with a different method [101].

We were also able to express the gap probability for multi-time Bessel process through

a Riemann-Hilbert problem and to analyze it in the same way as the one-time case. This is

the first time that the multi-time gap probabilities in the Bessel process are expressed in an

integrable way and this is the main contribution of the first work presented here.

The same method has then been applied to the Generalized Bessel process. The study

of gap probabilities for such process has never been addressed before and our results are

encouraging for future further investigations. In particular, a new Lax pair associated with

the gap probabilities has been proposed and its shape suggests a connection with some

higher order representative of a Painlevé hierarchy. Moreover, the definition of the multi-

time Generalized Bessel process is genuinely new and its gap probabilities, expressed as

τ -function, lead the way to additional possible analysis.

Next we turned to the problem of the asymptotic behaviour of the tacnode process. The

main difficulty in approaching the problem was the fact that the expression of the tacnode

kernel is highly transcendental, involving the resolvent of the Airy operator, and it was not

in a double integral form as the Bessel or Generalized Bessel operators. Once the connection

with an equivalent IIKS operator had been established, application of standard techniques

of steepest descent lead to the expected degeneration into two independent Airy processes in

given critical regimes. The tacnode process has been extensively studied in the past couple of

years and it is still subject of investigation. The results shown in this thesis are an important

contribution in the comprehension of the process and its properties.

In conclusion, the present thesis has attempted to shed light on some features of the

gap probability of the above Determinantal Point Processes, by either deriving differential

relations regulating this quantity or by studying its behaviour in specific critical settings.

154



Appendix A

Numerical simulation

In this appendix we will describe the numerical methods that were implemented in order to

obtain some of the figures shown along this thesis. To be more precise, the chapter will focus

on two subjects: we will first discuss about numerical evaluation of Fredholm determinants

and how it is possible to get quite accurate quantities up to a small error term. Next, we

will show how to get a realization of generic Dyson processes (i.e. non-intersecting Brownian

paths).

A.1 Evaluation of Fredholm determinants

We start by recalling a general definition of Fredholm determinant and by discussing the

most common theoretical methods that are used to evaluate such quantity.

Let (X, dμ(x)) be a (σ-finite) measure space and consider an integral operator K acting

on the Hilbert space L2(X, dμ(x)) and being trace-class (in general, K may belong to some

trace ideal [95]). We define its Fredholm determinant through the Fredholm expansion

det (Id+zK) = 1 +
∞∑
k=1

zk

k!

∫
Xk

det[K(xi, xj)]
k
i,j=1dμ(x1) . . . dμ(xk). (A.1.1)

where with abuse of notation we called K the kernel of the given operator.

The computation of the Fredholm determinant (or the regularized Fredholm-Carleman

determinant [95, Chapter 5] for generic integral operators) is an essentially transcendental

problem. Even assuming reasonable regularity properties, in most of the cases an evaluation

is possible if either the eigenvalues of the integral operator are explicitly known in a suitable

way or if an alternative analytic expression has been found that is numerically more accessi-

ble, mostly a differential equation whose solution is related the behaviour of the determinant.
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Therefore, theoretically speaking, every case of integral operator seems to require an ad hoc

study, lacking a general procedure for evaluating its Fredholm determinant.

On the other hand, if one is aiming at a simple numerical evaluation, finding eigenvalues

or integrating differential equations requires quite a computational cost for the machine.

Nevertheless, in the recent paper by Bornemann [14] such issue has been addressed effectively.

A first approach would be the so called projection method, where, by the use of well-

known Galerking techniques, the Hilbert space H := L2(X, dμ(x)) is decomposed into a

sequence of finite-dimensional, increasing subspaces Vm (with m = dim Vm and Vm ⊂ Vm+1,

∀m) whose union is dense in H,
⋃∞

m=1 Vm = H. Projecting the operator on such subspaces

reduces the evaluation of its Fredholm determinant to the computation of a finite determi-

nant, which approximates the original quantity up to an error depending on the regularity

of the kernel.

A more efficient approach is the Nyström-type quadrature method, especially for analytic

kernels, like the ones appearing in Random Matrix Theory. The idea is very simple and

it takes inspiration from Nyström’s ([90]) classical quadrature method for the numerical

solution of the Fredholm equation

u(x) + z

∫ b

a

K(x, y)u(y)dy = f(x) x ∈ [a, b], (A.1.2)

where the integral operator K is defined as

K(φ)[x] :=

∫ b

a

K(x, y)φ(y)dy in L2(a, b) (A.1.3)

with kernel K ∈ C0([a, b]2) a, b ∈ R. (A.1.4)

Given a quadrature rule ∫ b

a

f(x)dx ∼
m∑
j=1

wjf(xj) =: Qm(f) (A.1.5)

where wj are some suitable weights, Nyström discretized the Fredholm equation (A.1.2) as

the linear system

ui + z
m∑
j=1

wjK(xi, xj)uj = f(xi) i = 1, . . . ,m (A.1.6)

which has to be solved for ui (i.e. the value u(xi)), ∀ i = 1, . . . ,m, and {xi}mi=1 come from

the m-point Gauss-Legendre rule.
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The above method applied to the case of evaluating a Fredholm determinant

d(z) := det (Id+zK) (A.1.7)

is implemented by calculating the determinant of an m×m-matrix

dQ(z) = det [δij + zwiK(xi, xj)]
m
i,j=1 ; (A.1.8)

alternatively, if the weights wj of the quadrature rule are positive, the approximant becomes

dQm(z) = det
[
δij + zw

1/2
i K(xi, xj)w

1/2
j

]m
i,j=1

. (A.1.9)

The convergence results follow.

Theorem A.1 (Theorem 6.1, [14]). Consider a trace-class integral operator K of the type

(A.1.3)-(A.1.4). If a family {Qm} of quadrature rules converges for continuous functions,

then the corresponding Nyström-type approximation of the Fredholm determinant converges,

dQm(z)→ d(z) m→∞, (A.1.10)

uniformly for bounded z.

Theorem A.2 (Theorem 6.2, [14]). If the kernel K ∈ Ck−1,1([a, b]2)1, then for each quadra-

ture rule Q of order ν ≥ k with positive weights there holds the error estimate

dQ(z)− d(z) = O (
ν−k

)
. (A.1.11)

Therefore, whenever an evaluation of gap probabilities for a specific determinantal process

(with correlation kernel K) is needed, one can apply the results above and calculate the

approximated Fredholm determinant of the operator

K := K

∣∣∣∣
I

(A.1.12)

with I the bounded Borel set where the gap probabilities are studied.

Remark A.3. The method can also be generalized and applied to matrix kernels representing

the multi-time counterpart of the timeless process (see [14, Section 8.1 and 8.2]).

1We recall that, given an interval I ⊆ R, Cα,1(I) is the space of functions with are differentiable α times
with Lipschitz derivatives.
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Using Gauss-Legendre or Curtis-Clenshaw quadrature rules, the computational cost of the

method is of order O (m3). The implementation in MatLab R© or Maple R© is straightforward

and it takes just a few lines of code. For our purposes, we programmed using Maple 17.

The following code is the evaluation of the Bessel process in single time restricted to the

interval [0, s] (see Chapter 5, Figure 5.3).

> gen:=proc(n)

> local N,W,P;

> N:= ‘evalf/int/AGQ/AGQ_wr‘(n,’W’,’P’);

> if type(n,odd) then

> [seq(P[i],i=1..N), seq(1-P[N-i],i=1..N-1)],

> [seq(W[i],i=1..N),seq(W[N-i], i=1..N-1)];

> else

> [seq(P[i],i=1..N), seq(1-P[N-i+1],i=1..N)],

> [seq(W[i],i=1..N), seq(W[N-i+1],i=1..N)];

> end if;

> end proc:

> BesselKernel:=unapply(

> ( BesselJ(nu, sqrt(x))*sqrt(y)*BesselJ(nu+1, sqrt(y)) -

> BesselJ(nu, sqrt(y))*sqrt(x)*BesselJ(nu+1, sqrt(x)))

> /(2*(x-y)),x,y,nu);

> BesselDens:=unapply(simplify(subs(y=x,

> diff(( BesselJ(nu, sqrt(x))*sqrt(y)*BesselJ(nu+1, sqrt(y))

> - BesselJ(nu, sqrt(y))*sqrt(x)*BesselJ(nu+1, sqrt(x)))

> /(2),y))),x,nu);

> KB:=(x,y,nu)-> ‘if‘(x=y, BesselDens(x,nu), BesselKernel(x,y,nu));
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> FredBessel:=proc(s,nu,M)

> local P, W, Kern;

> if s>0 then

> (P,W):= gen(M):

> Kern:=(s)->

> IdentityMatrix(M) -

> Matrix(M,M,(i,j)-> evalf(W[i]*s*KB(s*P[i], s*P[j],nu))):

> return(evalf(Determinant(Kern(s))));

> else

> return (1);

> fi;

> end:

The same numerical strategy has been used for the evaluation of the tacnode process in

the limit regime as σ → +∞ and τ → ±∞, when the process degenerates into two Airy

processes (see Figures 7.4 and 7.5, Chapter 7). The original Maple code was written by M.

Bertola and M. Cafasso and illustrated in [12]. Such code has been reproduced here and

adjusted to the present purpose. In particular, in order to evaluate the Fredholm determinant

of the tacnode kernel we use the following formula ([12, Theorem 3.2])

det

(
Id−Ktac

∣∣∣∣
[a,b]

)
=

det
(
Id−Π̂HΠ̂

)
det (Id−πKAiπ)

(A.1.13)

where Π̂ := Id⊕π⊕Π, Π is the projector on [a, b] and π is the projector on [σ̃,+∞) (σ̃ := 2
2
3σ)

and H is equal to⎡⎢⎣ H−1,−1≡0 H−1,0(x,y)=−Ai(x+y) H−1,1(x,y)=Ai(−τ)( 3√2x+σ−y)

H0,−1(x,y)=−Ai(x+y) H0,0≡0 H0,1(x,y)=Ai(−τ)( 3√2x+y−σ)

H1,−1(x,y)=Ai(τ)(σ−x+ 3√2y) H1,0(x,y)=Ai(τ)(x−σ+ 3√2y) H1,1≡0

⎤⎥⎦ . (A.1.14)

On the other hand, the quadrature method described above cannot be applied directly

to the Airy process, since the Airy operator is restricted to an infinite interval of the type

[σ̃,+∞): indeed, the convergence of the Nyström-type approximation is guaranteed only for

operators defined on bounded sets (Theorem A.1).

The strategy is therefore to transform the infinite interval into a finite one, following the
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idea of [14]: by using a monotone, smooth transformation ([14, Formula 7.5])

φ : [0, 1]→ [σ̃,∞), φσ̃(ζ) = σ̃ + 10 tan

(
πζ

2

)
(A.1.15)

we define a new Airy integral operator pushed back on [0, 1] with kernel

K̃Ai(ξ, η) :=
√
φ′(ξ)φ′(η)KAi (φ(ξ), φ(η)) (A.1.16)

such that

det

(
Id−KAi

∣∣∣∣
[σ̃,∞)

)
= det

(
Id−K̃Ai

∣∣∣∣
[0,1]

)
. (A.1.17)

> K1:=(x,y)-> evalf((AiryAi(x)*AiryAi(1,y)

> - AiryAi(y)*AiryAi(1,x))/(x-y)):

> K2:=unapply(evalf(-simplify(diff((AiryAi(x)*AiryAi(1,y)

> - AiryAi(y)*AiryAi(1,x)), y),{y=x})) ,x):

> K_Ai:=(x,y)-> ‘if‘(x=y,K2(x), K1(x,y)):
> tpp:=x-> (10*tan(Pi*x/2)):

> dtpp:=unapply(simplify(diff(tpp(x),x)),x):

> phi:=unapply((tpp(x)),x);

> dphi:=unapply((dtpp(x)),x);
> KAi[pushback]:=(x,y,s)

> ->evalf(sqrt(dphi(x)*dphi(y)) *K_Ai(s+phi(x),s+phi(y)));
> FredAiry:=proc(s,M)

> local P, W,Z, Kern;

> (P,W):= gen(M):

> Kern:=(s)->

> IdentityMatrix(M) -

> Matrix(M,M,(i,j)-> evalf(W[i]*KAi[pushback](P[i], P[j],s))):

> return(evalf(Determinant(Kern(s))));

> end:
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> Ai[tau]:= unapply( 2^(1/6)*exp(tau*x+2/3*tau^3)*AiryAi(x+tau^2),(x,tau));

> HH[-1,0]:=(x,y)-> -AiryAi(x+y);

> HH[0,-1]:=(x,y)-> -AiryAi(x+y);

> HH[-1,1]:= unapply( Ai[tau]( x*2^(1/3)+s-y, -t_j),(x,y,t_j,s));

> HH[1,-1]:=unapply( Ai[tau]( s-x+y*2^(1/3), t_j ),(x,y, t_j,s));

> HH[0,1]:= unapply( Ai[tau]( x*2^(1/3)+y-s, -t_j),(x,y, t_j,s));

> HH[1,0]:= unapply( Ai[tau]( x-s+y*2^(1/3), t_j ),(x,y, t_j,s));
> FredTac:=proc (a,b,t,s,N)

> local Kern,P,W,II,W2, ss, NUMtac:

> (P,W):= gen(N):

> W2:= map(evalf,map(dphi,P)):

> ss:=s*2^(2/3):

> Kern[-1,0]:= Matrix(N,N,(i,j)->evalf(W2[i]*W[i]*

> *HH[-1,0] (phi(P[i]),ss+phi(P[j])))):

> Kern[-1,1]:= Matrix(N,N,(i,j)->evalf(W2[i]*W[i]*

> *HH[-1,1] (phi(P[i]),a+P[j]*(b-a),t,s ))):

> Kern[0,-1]:= Matrix(N,N,(i,j)->evalf(W2[i]*W[i]*

> *HH[0,-1] (ss+phi(P[i]),phi(P[j])))):

> Kern[0,1]:= Matrix(N,N,(i,j)->evalf(W2[i]*W[i]*

> *HH[0,1] (ss+phi(P[i]),a+P[j]*(b-a),t,s ))):

> Kern[1,-1]:= Matrix(N,N,(i,j)->evalf((b-a)*W[i]*

> *HH[1,-1] (a+P[i]*(b-a) ,phi(P[j]) ,t,s ))):

> Kern[1,0]:= Matrix(N,N,(i,j)->evalf((b-a)*W[i]*

> *HH[1,0] (a+P[i]*(b-a) ,ss+phi(P[j]) ,t,s ))):

> II:= IdentityMatrix(N):

> NUMtac:= <

> <II | -Kern[-1,0] | -Kern[-1,1]>,

> <-Kern[0,-1] | II | -Kern[0,1] >,

> <-Kern[1,-1] | -Kern[1,0] | II >>;

> return(evalf(Determinant(NUMtac))):

> end:

Remark A.4. The process “FredTac” only calculates the numerator of the Fredholm deter-

161



minant of the tacnode process. Therefore, it still needs to be divided by the Tracy-Widom

distribution on [σ̃,∞).

A.2 Non-intersecting random paths

As mentioned in the introduction of this chapter, we will now focus on the so called Dyson

processes. We call a Dyson process any process on ensembles of matrices in which the entries

undergo diffusion; in the original paper by Dyson [31], it was the ensemble of n×n Hermitian

matrices M , where the coefficients of each matrix independently executes Brownian motion

subject to a simple harmonic force. For the present section, we refer to the book by Mehta

[84] for all the details.

Suppose that the coefficients of the matrix have values {M1, . . . ,MN} (N = n2) at time

t, and values {M1+δM1, . . . ,MN +δMN} at time t+δt. A Brownian motion of M is defined

by requiring that each δMμ is a random variable with first and second moments

E (δMμ) = −Mμ

fa2
δt, E

(
(δMμ)

2
)
=

gμ
2
δt (A.2.1)

where gμ = 1 + δij, a ∈ R and the constant f is the friction coefficient which fixes the rate

of diffusion. The Fokker-Planck equation corresponding to equations (A.2.1) is

f
∂P

∂t
=
∑
μ

[
1

4
gμ

∂2P

∂M2
μ

+
1

a2
∂

∂Mμ

(MμP )

]
, (A.2.2)

where P (M1, . . . ,MN ; t) is the time-dependent probability density of the entries Mμ. Given

an initial condition M = M ′ at t = 0, the solution of equation (A.2.2) can be computed

explicitly:

P (M ; t) =
c

(1− q2)
N
2

exp

{
−Tr (M − qM ′)2

a2(1− q2)

}
(A.2.3)

q = exp

{
− t

fa2

}
(A.2.4)

and c is a suitable normalization constant.

Remark A.5. It is easy to see that the equilibrium measure as t → +∞ is the stationary

Gaussian Unitary Ensemble (GUE) measure from Random Matrix Theory

1

Zn,GUE

e−TrM2

. (A.2.5)
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Figure A.1: Numerical simulation of 50 non-intersecting Brownian paths with limiting shape.

with Zn,GUE the normalization constant, also called partition function, of the GUE.

As described in Chapter 2, given a matrix ensemble, the corresponding eigenvalue dis-

tribution is a determinantal point process which can be visualized as a collection of n non-

intersecting Brownian paths in the tx-plane.

Theorem A.6 (Theorem II, [31]). When the matrix M executes a Brownian motion accord-

ing to equations (A.2.1), starting from any initial condition, its eigenvalues {x1, . . . , xn}
execute a Brownian motion obeying the equation of motion of the time-dependent Coulomb

gas: if F (x1, . . . , xn; t) is the time-dependent probability density for finding the particles at

the positions xi at time t, then F satisfies the Fokker-Plank equation

f
∂F

∂t
=
∑
i

[
1

2

∂2F

∂x2
i

− ∂

∂xi

(E(xi)F )

]
(A.2.6)

where E is the external electric force

E(xi) =
∑
i �=j

1

xi − xj

− xi

a2
. (A.2.7)

It is straightforward to implement this result in a numerical code using MatLab R©. We
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Figure A.2: Numerical simulation of 70 non-intersecting Brownian paths starting at 1 and
ending at 0, with limiting shape.

first define the distribution of the matrix, given an initial condition, and then we calculate

its corresponding eigenvalues (see Figure A.1). For our purposes, we programmed using

MatLab R2014a.

H=ze ro s (N,N,T) ;

x=l i n s p a c e (0 , 1 ,T) ;

I n i t = diag ( a1∗ ones (N, 1 ) ) ;

H( : , : , 1 )= I n i t ;

F ina l = diag ( b1∗ ones (N, 1 ) ) ;

Evals = ze ro s (T,N) ;

Evals (1 , : )= e i g (H( : , : , 1 ) ) ;

f o r t=2:T

f o r k=1:N

H(k , k , t ) = ( randn (1)∗ s q r t (1/(T∗N)) −1/(T∗ s q r t (N) )∗H(k , k , t−1)) + H( k , k , t−1) ;

f o r j=k+1:N

H( j , k , t ) = ( randn (1 ) ∗ s q r t (1/(T∗(N) )/2 )

− 1/(T∗ s q r t (N) )∗ r e a l (H( j , k , t−1)) ) +r e a l (H( j , k , t−1)
+ 1 i ∗( randn (1 ) ∗ s q r t (1/(T∗(N))/2)−1/T/ sq r t (N)∗ imag (H( j , k , t−1))

+ imag (H( j , k , t−1) ) ) ) ;

H(k , j , t ) = H( j , k , t ) ’ ;

end ;
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end ;

end ;

f o r t=2:T

H( : , : , t ) = H( : , : , t ) − t /T∗( H( : , : ,T) −Fina l ) ;

Evals ( t , : ) = e i g (H( : , : , t ) ) ;

end ;

EP=ze ro s (T, 2 ) ;

EP(1 , : )= [ a1 a1 ] ;

f o r k=2:T

EP(k ,1)= (1−x (k ) )∗ a1 +x(k )∗b1 − 2∗ s q r t (1/2∗x (k)∗(1−x (k ) ) ) ;

EP(k ,2)= (1−x (k ) )∗ a1 +x(k )∗b1 + 2∗ s q r t (1/2∗x (k)∗(1−x (k ) ) ) ;

end ;

p l o t (x , Evals ) ;

hold on

p lo t (x ,EP, ’ k ’ , ’ LineWidth ’ , 2 ) ;

hold o f f

The limiting hull in the tx-plane consists of an ellipse-like shape which can be explicitly

described. Indeed, for any t ∈ [0, 1], the limiting distribution of the positions of the paths

at time t is supported on an interval [αt, βt], where the endpoints satisfy

αt = (1− t)a+ tb− 2
√
Kt(1− t), (A.2.8)

βt = (1− t)a+ tb+ 2
√
Kt(1− t), (A.2.9)

where K is a parameter depending on the constant a and the friction f . We recall that the

limiting density of the particles is given by the Wigner’s semicircle law on that interval (see

[84]).

165



Bibliography

[1] M.J. Ablowitz and A.S. Fokas. Complex variables. Introduction and applications. Cam-

bridge Texts in Applied Mathematics. Cambridge Unviersity Press, 2nd edition, 2003.

[2] M. Adler, M. Cafasso, and P. Van Moerbeke. From the Pearcey to the Airy processes.

Electron. J. Probab., 16(36):1048–1064, 2011.

[3] M. Adler, P. L. Ferrari, and P. Van Moerbeke. Non-intersecting random walks in the

neighborhood of a symmetric tacnode. Ann. Prob., 41(4), 2013.

[4] M. Adler, K. Johansson, and P. Van Moerbeke. Double aztec diamonds and the tacnode

process. arXiv:1112.5532, 2011.

[5] M. Adler and P. van Moerbeke. PDEs for the joint distributions of the Dyson, Airy

and Sine processes. Annals of Probability, 33(4):1326–1361, 2005.

[6] J. Baik, P. Deift, and K. Johansson. On the distribution of the length of the longest

increasing subsequence of random permutations. J. Amer. Math. Soc., 12:1119–1178,

1999.

[7] J. Baik, P.A. Deift, and K. Johansson. On the distribution of the length of the longest

increasing subsequence of random permutations. J. Amer. Math. Soc., 12:1119–1178,

1999.

[8] E. Basor, Y. Chen, and L. Zhang. PDEs satisfied by the eigenvalue distributions of

GUE and LUE. Random Matrices Theory Appl., 1, 2012.

[9] M. Bertola. The dependence of the monodromy data of the isomonodromic tau func-

tion. Comm. Math. Phys., 294(2):539–579, 2010.

[10] M. Bertola and M. Cafasso. Riemann-Hilbert approach to multi-time processes: the

Airy and the Pearcey cases. Physica D, 241(23-24):2237–2245, 2012.

166



[11] M. Bertola and M. Cafasso. The transition between the Gap Probabilities from the

Pearcey to the Airy Process - a Riemann–Hilbert Approach. Int. Math. Res. Not.,

2012(7):1519–1568, 2012.

[12] M. Bertola and M. Cafasso. The gap probabilities of the tacnode, Pearcey and Airy

point processes, their mutual relationship and evaluation. Random Matrices Theory

Appl., 2(2), 2013.

[13] P. M. Bleher and A. B. J. Kuijlaars. Large n limit of Gaussian random matrices with

external source. Part III: double scaling limit. Comm. Math. Phys., 270:481–517, 2007.

[14] F. Bornemann. On the numerical evaluation of Fredholm determinants. Math. Comp.,

79(270):871–915, 2010.

[15] A. Borodin. Biorthogonal ensembles. Nucl. Phys. B, 536:704–732, 1999.

[16] A. Borodin and G. Olshanski. Representation theory and random point processes. In

European Congress of Mathematics, volume 73-74, Zurich, 2005. Eur. Math. Soc.

[17] B.V. Bronk. Exponential ensemble for random matrices. J. Math. Phys., 6:228–237,

1965.

[18] P. Deift. Orthogonal polynomial and random matrices: a riemann-hilbert approach. In

Courant Lecture Notes in Mathematics, volume 3. Amer. Math. Soc., Povidence R.I.,

1999.

[19] P. Deift, T. Kriecherbauer, K.T.R. McLaughlin, S. Venakides, and X. Zhou. Asymp-

totics for polynomials orthogonal ith respect to varying exponential weights. Int. Math.

Res. Not., pages 759–782, 1997.

[20] P. Deift, T. Kriecherbauer, K.T.R. McLaughlin, S. Venakides, and X. Zhou. Strong

asymptotics of orthogonal polynomials with respect to exponential weights. Comm.

Pure and Appl. Math, 52:1491–1552, 1999.

[21] P. Deift, T. Kriecherbauer, K.T.R. McLaughlin, S. Venakides, and X. Zhou. Uniform

asymptotics for polynomials orthogonal with respect to varying exponential weights

and applications to universality questions in random matrix theory. Comm. Pure and

Appl. Math, 52:1335–1425, 1999.

[22] P. Deift, S. Venakides, and X. Zhou. The collisionless shock region for the long-time

behaviour of solutions for the KdV equation. Commun. Pure Appl. Math., 47:199–206,

1994.

167



[23] P. Deift, S. Venakides, and X. Zhou. New results in small dispersion KdV by an

extension of the steepest descent method for Riemann-Hilbert problems. Int. Math.

Res. Not., (286-299), 1997.

[24] P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert

problems. Bull. Amer. Math. Soc., 26(1):119–123, 1992.

[25] P. Deift and X. Zhou. A steepest descent method for oscillatory Riemann-Hilbert

problems. Asymptotics for the MKdV equation. Ann. Math., 137:295–368, 1993.

[26] P. Deift and X. Zhou. Asymptotics for the Painlevé II equation. Commun. Pure Appl.
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