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We will illustrate here how to use computer packages to obtain analytical and numerical solutions

for systems of ordinary differential equations. We restrict our attention to linear equations with
constant coefficients.

For numerical solution, the techniques used here can be extended in an obvious way to non-linear
and non-autonomous systems (see Exercise section).

1 Numerical solutions

In MATLAB R©, solving systems of ODEs is not much different than solving a single (scalar) ODE.
You must create a function for your system

~x ′ = ~F (~x),

which must be then passed into a script that will use the ode45 solver.

Example – Non-homogeneous linear system with constant coefficients.

~x ′ =

[
−1 −2
1 −3

]
~x+

[
cos(t)

1

]
We first create a function that encodes the right-hand side of the system:

function [ F ] = example ( t , x )
A = [−1 −2; 1 −3];

F = A∗x + [ cos ( t ) ; 1 ] ;

end

We can then numerically find the solution of the Cauchy problem with ode45:
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>> t = [ 0 : 0 . 0 1 : 5 ] ;
>> x0 = [ 0 0 ] ;
>> x s o l = ode45 ( @example , t , x0 ) ;

and we can plot it.

Example 2 – Phase portraits. To create phase portraits in MATLAB R©, we must use the
meshgrid command and evaluate the first derivative of x1 and x2 at each point (x1, x2) of the
phase-plane, for t = 0.

Then, we use the quiver command to plot the vector field. To plot a specific solution, use the
usual ode45 command and plot the first and second columns of the output matrix.

>> [ x , y ] = meshgrid (−10:1 :10 , −10 :1 :10) ;

>> xprime = zeros ( s ize ( x ) ) ;
>> yprime = zeros ( s ize ( x ) ) ;

>> t =0;
>> for i = 1 : numel ( x )

dxdt = example ( t , [ x ( i ) ; y ( i ) ] ) ;
xprime ( i ) = dxdt ( 1 ) ;
yprime ( i ) = dxdt ( 2 ) ;

end

>> quiver (x , y , xprime , yprime , ’b ’ ) ;
>> xlabel ( ’ x ( t ) ’ ) ;
>> ylabel ( ’ y ( t ) ’ ) ;

>> t = linspace ( 0 , 5 ) ;
>> x0 = [ 5 , −7];

>> hold on
>> x s o l = ode45 (@( t , y ) example ( t , y ) , t , x0 ) ;
>> plot ( x s o l . y ( 1 , : ) , x s o l . y ( 2 , : ) )
>> hold o f f

2 Analytic solutions

Given a linear system

~x ′ = A~x,

we can easily calculate the general equation by telling MATLAB R© to find the eigenvalues and the
eigenvectors for us and then assembling the solutions ~x1(t), . . . , ~xN (t).
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Example 1 – Homogeneous linear system. Consider the linear system

~x ′ =

−1 1 0
−1 −1 0
0 0 2

 ~x
Finding the general solution with MATLAB R© is straightforward:

>> syms t real
>> [ Evec , Eval ] = eig (A) ;

>> X1 = exp( t ∗Eval ( 1 , 1 ) ) . ∗ Evec ( : , 1 ) ;
e t c .

Once a basis of linearly independent solutions is found, the general solution is ~x(t) = c1~x1(t) +
. . .+ cN~xN (t).

Example 2 – Matrix Exponential. Consider the same matrix as before

A =

−1 1 0
−1 −1 0
0 0 2


It is possible to calculate the matrix exponential via the procedure seen in class.
Remember that given the system ~x ′ = A~x, we first build the Fundamental Matrix of solutions

X(t) = [~x1(t)|~x2(t)| . . . |~xN (t)]

and the matrix exponential is then

eAt = X(t)X(0)−1.

With MATLAB R©, we have

>> Fund = [ X1 X2 X3 ] ;
>> Fundinv0 = subs ( inv (Fund) , 0 ) ;

>> ExpA = Fund∗Fundinv0 ;

Alternatively, we can use directly the code expm:

>> syms t real
>> ExpAdirect = expm( t ∗A) ;

Once we’ve found the matrix exponential it is straightforward to calculate the solution of the
given system. Remember that given a Cauchy problem{

~x ′ = A~x+ ~f(t)

~x(0) = ~x0
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(if ~f(t) = 0, then we have a standard homogeneous problem), then the solution is

~x(t) = eAt~x0 +

∫ t

0
eA(t−s) ~f(s)ds.

For example, for the system (the matrix is the same matrix A as in the previous example)

~x ′ =

−1 1 0

−1 −1 0

0 0 2

 ~x+

 1

cos(t)

0


~x(0) =

0

0

1


we have

>> syms s real
>> x s o l = ExpA∗x0 + ExpA∗ i n t (expm(−s ∗A) ∗ f , 0 , t )

3 Exercises

Exercise 1 - Linear system of ODEs. Find the general solution of the following systems and
decide whether the origin is stable/asymptotically stable/unstable.

Then, compare your conclusions with the numerical results: plot the phase portrait of the
system and plot some solutions with arbitrarily chosen initial condition (x0, y0).

1. {
x′ = −2x

y′ = x− 4y

2. {
x′ = x

y′ = −y

3. {
x′ = −x
y′ = −y

4. {
x′ = −x+ 2y

y′ = −y
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5. {
x′ = 3y

y′ = −x

6. {
x′ = x− 8y

y′ = 8x+ y

Exercise 2 - Non-homogeneous linear system of ODEs. Find the equilibrium point(s) of
the following system and determine their stability properties. Compare your conclusion with the
numerical results by plotting the phase portrait of the system and some solutions with arbitrarily
chosen initial condition (x0, y0).

{
x′ = −2x− 6y + 8

y′ = 8x+ 4y − 12

Exercise 3 - Lotka-Volterra model. Plot the phase field of the Lotka-Volterra equations{
x′ = 2x− xy
y′ = −5y + 3xy

On the same graph plot the orbits with initial conditions (x0, y0):

(1, 2), (2, 1.5), (0.5, 4).

Exercise 3 - Non-linear conservative systems. Derive the potential energy that describes
the motion of the physical system described below and deduce the phase portrait.

1. y′′ + 1
2(y2 − 1) = 0

2. y′′ + 4y3 − 4y = 0

3. Pendulum equation: y′′ + 1
2 sin(y) = 0

For each of the equations, plot numerically the vector field of the phase portrait and on the
same graph plot the orbits with the prescribed initial conditions.

1. y′′ + 1
2(y2 − 1) = 0 with initial conditions (x0, y0):

(−4.5, 4.5), (−4, 4.25), (−4, 5), (0, 0), (1/2, 0), (0.8, 0);

2. y′′ + 4y3 − 4y = 0 with initial conditions (x0, y0):

(0.1, 0.1), (−0.1, 0.1), (±0.8, 0), (0, 1), (0, 2).

3. Pendulum equation y′′ + 1
2 sin(y) = 0 with initial conditions (x0, y0):

(±3, 0), (±2, 0), (−6, 0.5), (6,−0.5).
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Exercise 4 - Phase portraits for 3-dimensional systems. Plot the (3D) phase portrait of
the following systems (you will need to use the command plot3):

1. A linear system (+ non-homogeneity):

~x ′ =

0 −1 0
1 0 0
0 0 − 1

10

 ~x+ ~f(t)

with

a) ~f(t) = ~0;

b) ~f(t) = [cos(t), 1, 1]T ;

c) ~f(t) = [cos(x), 0, 0]T .

2. Lorenz system: it is a simplified mathematical model for atmospheric convection (proposed
by Lorenz in 1963). A sample solution in the Lorenz attractor is when ρ = 28, σ = 10 and
β = 8

3 . 
x′ = σ(y − x)

y′ = ρx− y − xz
z′ = xy − βz

3. Rössler system: it is a system of three non-linear ordinary differential equations modelling
equilibrium in chemical reactions (studied Rössler in 1976). For this exercise, we set α = 0.2,
β = 0.2 and γ = 5.7. 

x′ = −y − z
y′ = x+ αy

z = β + z(x− γ)
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