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In these notes we give a brief and (hopefully) clear review of what it means to give a variational
formulation of a differential equation.

We will mostly focus on giving some motivations and intuitions, and we will claim fundamental
results without giving proofs. For the hungry and enthusiastic readers we can refer to the classical
books by Brezis [1] and Evans [2].

1 Preliminaries

Consider the following boundary value problem: given a function f ∈ C0([a, b]), find a function
u : [a, b]→ R such that it solves {

−u′′ + u = f in [a, b]

u(a) = u(b) = 0.
(1)

Definition 1. A classic solution (sometimes called strong solution) to the problem is a function
u ∈ C2([a, b]) such that it vanishes at the endpoints and pointwise it satisfies the equation −u′′(x)+
u(x) = f(x).

Let’s change approach. Suppose that we formally multiply the differential equation by an
arbitrary function φ ∈ C1([a, b]) with φ(a) = φ(b) = 0 and we integrate over the interval [a, b]:

−
∫ b

a
u′′(x)φ(x)dx+

∫ b

a
u(x)φ(x)dx =

∫ b

a
f(x)φ(x)dx. (2)
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Integrating by parts the first term on the left hand side of the equality, we get (remember that
both φ(x) and u(x) vanish at the endpoints)∫ b

a
u′(x)φ′(x)dx+

∫ b

a
u(x)φ(x)dx =

∫ b

a
f(x)φ(x)dx ∀ φ ∈ C1([a, b]), φ(a) = φ(b) = 0. (3)

We can notice now that for such expression to be well-defined it’s enough to require u ∈ C1([a, b])
(plus the additional vanishing condition at the boundary).

Definition 2. A function u ∈ C1([a, b]) with u(a) = u(b) = 0 is a weak solution to the problem
(1) if it satisfies (3).

Moreover, the equality (3) makes sense also if we simply require u, u′ ∈ L1(a, b). The idea is
that by expanding the functional space where we’re looking for solutions we might get lucky and
find the solution we are looking for.

On the other hand, some questions now arise:

1) What is the relationship of u and u′ in L1(a, b)? What does it mean to take the “derivative” of
a function that belongs to L1(a, b)?

2) What does is mean to evaluate an L1-function on a point and impose that u(a) = u(b) = 0? (a
point has measure zero with respect to the Lebesgue measure on R and L1-functions are defined
almost everywhere)

In general, if we consider a boundary- or initial-value problem for (partial) differential equations,
it’s really difficult to work in a classical setting and find a classical solution (i.e. functions of
regularity Ck(Ω), where Ω is the domain of definition). It becomes necessary to weaken some
conditions and work in bigger functional spaces where we have a weak (or variational) version of
the form (3) of the original problem (1).

Eventually, we might even hope that the weak solution that we found could be more regular
and we might be able to recover (via powerful theorems) some “classical” properties like continuity,
pointwise validity (a.e.), etc.

In the following sections we will try to give a consistent answer to the two questions above,
namely

1) the notion of derivatives for Lp-functions and

2) restriction of an Lp-function over a set of measure zero.

2 Distributions

The “Preliminaries” section above gives the motivation for the introduction of new functional spaces
called Sobolev spaces.

Sobolev spaces can be thought as similar to Ck(Ω), i.e. spaces of functions where we impose
conditions on their “derivatives” such that if f ∈ Lp(Ω), then also ∂f

∂xj
∈ Lp(Ω)
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But we still need to define what a derivative means here. To do so, we need to give some
results about distributions and we will then be able to define the derivative of an Lp-function in a
distributional sense.

From now on we will consider a set Ω ⊆ Rn that is open and connected (we call it domain).
We recall the space of functions

C∞c (Ω) = {the space of infinitely-differentiable functions with compact support} (4)

(.i.e. for any u ∈ C∞c (Ω) its support suppu := {x ∈ Rn | u(x) 6= 0} is equal to a compact set
K ⊂⊂ Ω) and we introduce a natural topology on such space.

Definition 3. Let {φk} be a sequence of functions in C∞c (Ω) and φ ∈ C∞c (Ω). We say that {φk}
converges to φ in C∞c (Ω)

φk → φ in C∞c (Ω)

if

1) ∃ K ⊂⊂ Ω (a compact subset K ⊆ Ω) which contains all the supports of φk ∀ k

2) any derivative converges: Dαφk → Dαφ uniformly in Ω for any multi-index α = (α1, . . . , αn)
(recall that Dαu := ∂α1

x1
. . . ∂αn

xn u)

Note 4. We denote the space C∞c (Ω) with the topology induced by the convergency definition above
as D(Ω).

Remark 5. By definition of convergency, it follows that if φk → φ in D(Ω), then Dαφk → Dαφ
in D(Ω) for any multi-index α.

With this topology in mind, we can define the notion of continuous (linear) operator on such
space.

Definition 6. An operator O : D(Ω)→ R is continuous if

O(φk)→ O(φ) for any sequence {φk} converging to φ in D(Ω). (5)

Definition 7. A distribution is a linear continuous operator on D(Ω): L : D(Ω)→ R. The space
of all distributions is called the dual space of D(Ω) and it’s indicated as D′(Ω).

The dual space is again a topological space where we can define the notion of convergency in a
natural way.

Definition 8. Let {Lk} be a sequence of distributions in D′(Ω) and L ∈ D′(Ω). We say that {Lk}
converges to L in D′(Ω)

Lk → L in D′(Ω)

if for any φ ∈ D(Ω) (a “test function”)

Lk(φ) = D′〈Lk, φ〉D → D′〈L, φ〉D = L(φ) (6)

(the notation 〈·, ·〉 indicates the duality pairing).

3



Example 1. Consider a function f ∈ L1
loc(Ω) (i.e. f ∈ L1(K) for any K ⊂⊂ Ω) and define the

functional Gf : D(Ω)→ R as

〈Gf, φ〉 :=

∫
Ω
f(x)φ(x)dx ∀ φ ∈ D(Ω). (7)

Then Gf is clearly linear and it’s a continuous operator; indeed, given a convergent sequence
φk → φ in D(Ω), we have

〈Gf, φk − φ〉 =

∫
Ω
f(x) [φk(x)− φ(x)] dx ≤ sup

K
|φk(x)− φ(x)| ‖f‖L1(K) → 0 (8)

where K is a compact subset of Ω such that K ⊇ {
⋃
k suppφk ∪ suppφ}.

Therefore, Gf is a distribution and with abuse of notation we can identify the distribution Gf
simply with the function f itself.

Proposition 9. For any f ∈ L1
loc(Ω), f ∈ D′(Ω).

Remark 10. Given that Lp(Ω) ↪→ L1
loc(Ω) ↪→ D′(Ω) for 1 ≤ p < +∞ (the symbol ↪→ means

continuous embedding: A ↪→ B ⇔ A ⊆ B and ∀ v ∈ A: ‖v‖B ≤ c‖v‖A, for some constant c ∈ R+),
any function f ∈ Lp(Ω) is a distribution.

Example 2. Suppose that 0 ∈ Ω ⊆ Rn and define the functional δ0 : D(Ω)→ R as

〈δ0, φ〉 := φ(0) ∀ φ ∈ D(Ω). (9)

Then δ0 is linear and continuous (if φk → φ in D(Ω), then φk(0)→ φ(0) in R).
We call the distribution δ0 as Dirac Delta distribution.

Remark 11. Such distribution cannot be identifiable with any function in any Lp-space.

2.1 Distributional derivative

Consider as before a domain Ω ⊆ Rn (i.e. open, connected set) and assume its boundary ∂Ω to be
sufficiently regular.

If u ∈ C1(Ω) and φ ∈ D(Ω) (test function), then by Gauss-Green formula we have∫
Ω

∂u

∂xj
φ(x)dx = −

∫
Ω
u(x)

∂φ

∂xj
dx (10)

(the boundary term
∫
∂Ω u(σ)νjφ(σ)dσ is zero since φ ∈ D(Ω)). We can generalize this expression

and extend it to the space of distributions in the following way.

Definition 12. Let F ∈ D′(Ω). We define the distributional derivative ∂F
∂xj

as the distribution

D′〈
∂F

∂xj
, φ〉D := − D′〈F,

∂φ

∂xj
〉D ∀ φ ∈ D(Ω).

Remark 13. • If u ∈ C1(Ω), then the classical derivative ∂u
∂xj
∈ C0(Ω) coincides with the

distributional one.
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• A distributional derivative can always be defined because − D′〈F, ∂φ∂xj 〉D is a linear operator on

D(Ω) and it is also continuous: if φk → φ in D(Ω), then Dαφk → Dαφ in D(Ω) and therefore
−〈F, ∂φk∂xj

〉 → −〈F, ∂φ∂xj 〉 in R.

• Every distribution admits infinitely many (distributional) derivatives and the following holds

∂2F

∂xi∂xj
=

∂

∂xi

(
∂F

∂xj

)
=

∂

∂xj

(
∂F

∂xi

)
(11)

(same for higher order derivatives).

Example 1. Consider the Heaviside function

H(x) =

{
0 −1 ≤ x ≤ 0

1 0 < x ≤ 1
(12)

H ∈ L1
loc(−1, 1) ↪→ D′(−1, 1). If we calculate its classical derivative we have H ′(x) ≡ 0 on

[−1, 1]\{0}.
On the other hand, if we calculate its distributional derivative, we have by definition

〈H ′, φ〉 := −〈H,φ′〉 = −
∫ 1

−1
H(x)φ′(x)dx = −

∫ 1

0
φ′(x)dx = φ(0)− φ(1) = φ(0) (13)

∀ φ ∈ D(−1, 1); therefore, H ′ = δ0 ∈ D′(Ω) in the distributional sense.

Example 2. Consider the function u ∈ C0(0, 2)

u(x) =

{
x 0 < x ≤ 1

1 1 < x < 2
(14)

then its distributional derivative is

〈u′, φ〉 := −〈u, φ′〉 = −
∫ 2

0
u(x)φ′(x)dx = −

∫ 1

0
xφ′(x)dx−

∫ 2

1
φ′(x)

= − [xφ(x)]10 +

∫ 1

0
φ(x)dx− φ(2) + φ(1) = −φ(1) +

∫ 1

0
xφ′(x)dx+ φ(1) =

∫ 1

0
xφ′(x)dx (15)

∀ φ ∈ D(0, 2); thus u′ ∈ D′(0, 2) is defined as

u′(x) =

{
1 0 < x ≤ 1

0 1 < x < 2.
(16)

In this case the distributional derivative is identifiable with a function in L1
loc(0, 2).
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Example 3. Consider the function v ∈ D′(0, 2)

v(x) =

{
x 0 < x ≤ 1

2 1 < x < 2
(17)

then its distributional derivative is

〈v′, φ〉 := −〈v, φ′〉 = −
∫ 2

0
v(x)φ′(x)dx = −

∫ 1

0
xφ′(x)dx−

∫ 2

1
2φ′(x)

= − [xφ(x)]10 +

∫ 1

0
φ(x)dx− 2φ(2) + 2φ(1) = −φ(1) +

∫ 1

0
xφ′(x)dx+ 2φ(1) =

∫ 1

0
xφ′(x)dx+ φ(1)

(18)

∀ φ ∈ D(0, 2); thus v′ ∈ D′(0, 2) is defined as

v′(x) = u′ + δ1 (19)

where u′ ∈ L1
loc(0, 2) has been defined in the previous example.

3 Sobolev spaces

We can now give a definition of Sobolev spaces. From now on we will only consider domains Ω ⊂ Rn
which are bounded (unless otherwise stated), for the sake of simplicity.

Definition 14. Let Ω be a bounded domain in Rn. For any p ∈ [1,+∞] we define

W 1,p :=

{
u ∈ Lp(Ω)

∣∣∣∣ ∂u∂xj ∈ Lp(Ω), ∀ j = 1, . . . , n

}
= {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω), ∀ multi-index |α| = 1} (20)

The definition above can be generalized to the case of derivative of higher order.

Definition 15. Let Ω be a domain in Rn. For any p ∈ [1,+∞], k ∈ N we define

W k,p := {u ∈ Lp(Ω) | Dαu ∈ Lp(Ω), ∀ multi-index |α| ≤ k} (21)

Remark 16. Functions that belong to a Sobolev space (∀ p, k) have distributional derivatives which
admits a representation as a L1

loc-function (there are no delta distributions).

The case p = 2 deserves special attention, as it will be clear a few lines below, and it has its
own definition.

Definition 17. Let Ω be a domain in Rn. For any k ∈ N we define

Hk(Ω) =
{
u ∈ L2(Ω)

∣∣ Dαu ∈ L2(Ω), ∀ multi-index |α| ≤ k
}

(22)

6



We will now state some of the main properties of the Sobolev spaces. We introduce a norm in
such spaces as

‖u‖Wk,p(Ω) :=

 ∑
0≤|α|≤k

‖Dαu‖pLp(Ω)

 1
p

∀ p ∈ [1,+∞) (23)

and

‖u‖Wk,p(Ω) :=
∑

0≤|α|≤k

‖Dαu‖L∞(Ω) p = +∞ (24)

In other words, the norm of a function u ∈W k.p(Ω) is the sum of the norm of u and the norms of
all its derivatives in Lp(Ω).

For the particular case of Hk(Ω) we can define an inner product as

(u, v)Hk(Ω) :=
∑

0≤α≤k
(Dαu,Dαv)L2(Ω) =

∑
0≤α≤k

∫
Ω
Dαu(x)Dαv(x)dx (25)

which automatically induces a norm

‖u‖Hk(Ω) :=

 ∑
0≤|α|≤k

‖Dαu‖2L2(Ω)

 1
2

. (26)

The following theorem holds

Theorem 18. • The space W k,p(Ω) with the norm defined above is a Banach space for any
p ∈ [1,+∞].

• In particular, W k,p(Ω) is reflexive for any p ∈ (1,+∞) and separable for any p ∈ [1,+∞).

• The space Hk(Ω) with the inner product defined above is a separable Hilbert space.

At this point, one might wonder whether functions in W k,p(Ω) might enjoy further regularity
properties.

We may argue that, for example, if p is a high value, then the functions decay more rapidly, or
if k is high, then the functions admits more “derivatives” and should be more regular.

On the other hand, we can intuitively guess that if we are in high dimension (big value of n),
then there are more degrees of freedom and we might gain less regularity.

There exist indeed a relation between these parameters and the regularity of the functions in
the Sobolev space W k,p(Ω), when Ω ⊆ Rn. All the results are known as “Sobolev embedding
theorems”.

Theorem 19 (Sobolev embedding Theorem). Let Ω ⊂ Rn be a bounded domain with sufficient
regularity along its boundary ∂Ω.
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• If kp < n, then

W k,p(Ω) ⊆ Lq(Ω) ∀ q ∈ [1, p∗], p∗ =
pn

n− kp
and the inclusion is continuous for any q ∈ [1, p∗], i.e.

‖u‖Lq(Ω) ≤ c ‖u‖Wk,p(Ω) , (27)

and compact for any q ∈ [1, p∗), i.e.

for any bounded sequence {vk} ⊆W k,p(Ω), ∃
{
vkj
}

such that vkj → v in Lq(Ω). (28)

• If kp = n, then
W k,p(Ω) ⊆ Lq(Ω) ∀ q ∈ [1,+∞)

and the inclusion is continuous and compact for all q ∈ [1,+∞).

• If kp > n, then

W k,p(Ω) ⊆ Cm(Ω) with m =

[
k − n

p

]
(the symbol [·] denotes here the integer part) and the inclusion is continuous and compact.

Remark 20. The third bullet can be re-stated in the following way: if u ∈W k,p(Ω) (with kp > n),
then there exists a function ũ ∈ Cm(Ω) such that u = ũ almost everywhere.

Example: the Hilbert space H1(Ω). We recall that

H1(Ω) =

{
u ∈ L2(Ω)

∣∣∣∣ ∂u∂xj ∈ L2(Ω), ∀ j = 1, . . . , k

}
(29)

1) If Ω ⊂ R (an interval), then H1(Ω) = W 1,2(Ω) ⊆ C0(Ω). Therefore, any function in H1(Ω)
admits a continuous representative, but we have no information about the derivatives.

2) If Ω ⊂ R2 (a subset of the 2D-plane), then H1(Ω) = W 1,2(Ω) ⊆ Lp(Ω) for all p ∈ [1,+∞), but
u ∈ H1(Ω) might not be bounded.

For example, consider the unit disk Ω =
{

(x, y) ∈ R2 | x2 + y2 ≤ 1
}

and the function u(x) =[
− log(x2 + y2)

] 1
4 defined on it. It can be proven that u ∈ H1(Ω), but u is clearly not bounded

in a neighbourhood of zero.

3) If Ω ⊂ R3 (a portion of the 3D-space), then H1(Ω) = W 1,2(Ω) ⊆ Lp(Ω) where the range of p is
more limited: p ∈ [1, p∗], with p∗ = pn

n−kp = 6.

Remark 21. More generally, it follows from Sobolev embedding Theorem that H1(Ω) ⊆ L2(Ω)
(with continuous embedding) for any dimension of the space Rn.

Indeed, we saw already that this is true for the cases n = 1, 2, 3; for n ≥ 4 we have that
H1(Ω) ⊆ Lp(Ω) with p ∈ [1, p∗], but p∗ = 2n

n−2 > 2 for any n, therefore (Ω is bounded) H1(Ω) ⊆
Lp
∗
(Ω) ⊆ L2(Ω).
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4 Density and Trace

With the previous section we gave an answer to the first question stated in the Preliminaries. We
need to tackle now a way to define consistently what does it mean to restrict a function (that is
defined almost everywhere) on a set of measure zero.

We will first start with giving some density results. We recall that

Proposition 22. C∞c (Ω) is dense in Lp(Ω) for any p ∈ [1,+∞).

Is such space also dense in a Sobolev space W k,p(Ω) for some k, p? The short answer is that
the density of C∞c (Ω) depends on the domain Ω.

The motivation for studying density properties of the space C∞c (Ω) into Sobolev spaces comes

from the fact that if indeed (C∞c (Ω))
‖·‖k,p = W k,p(Ω), then every function u ∈ W k,p(Ω) can

be approximated by a sequence of infinitely-differentiable functions for which the operation of
restriction over the boundary of Ω (or over any set of Rn-dimension equal zero) is well defined. By
a limit process, we can then extend the notion of restriction to any function in W k,p(Ω).

Definition 23. Given a bounded domain Ω (with sufficient boundary regularity), for any function
u : Ω→ R the operation of restriction over the boundary of Ω (denoted as u|∂Ω : ∂Ω→ R) is called
trace.

The following results hold.

Theorem 24. C∞c (Rn) is dense in W k,p(Rn) for any p ∈ [1,+∞), for any k.

However, in the case of a bounded domain Ω we only achieve a weaker result.

Theorem 25. Given a bounded domain Ω, sufficiently regular on the boundary, C∞(Ω) is dense
in W k,p(Ω) for any p ∈ [1,+∞).

The space C∞(Ω) on the other hand is not our space of test functions and indeed in general we

have that (C∞c (Ω))
‖·‖k,p (W k,p(Ω) (i.e. C∞c (Ω) is not dense in W k,p(Ω)).

Definition 26. The closure of the space C∞c (Ω) with respect to the Sobolev norm ‖·‖Wk,p(Ω) is a

subset of W k,p(Ω) and it is denoted as

W k,p
0 (Ω) := (C∞c (Ω))

‖·‖k,p for p ∈ [1,+∞).

Proposition 27. For any p ∈ [1,+∞), the space W k,p
0 (Ω) is a separable Banach space with respect

to the induced norm ‖·‖Wk,p(Ω). Furthermore, it is reflexive for p ∈ (1,+∞).

For studying solutions of PDEs, it is usually more convenient to work in the Hilbert spaces
Hk(Ω). We denote

Hk
0 (Ω) := (C∞c (Ω))

(·,·)
Hk(Ω)

It is also possible to prove that Hk
0 (Ω) is a Hilbert space with respect to the induced inner product.

In particular, we have the following results for the space H1
0 (Ω) (recall that H1(Ω) = {u ∈

L2(Ω) | ∂ju ∈ L2(Ω), j = 1, . . . , n}).
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Theorem 28. Given a bounded domain Ω ⊂ Rn sufficiently smooth, then

• H1
0 (Ω) is dense in L2(Ω)

• u ∈ H1
0 (Ω) ⇔ u = 0 on ∂Ω.

Remark 29. u is not necessarily continuous on ∂Ω or even defined everywhere, but the expression
“u = 0 on ∂Ω” is claiming that u|∂Ω = 0 almost everywhere with respect to the (n− 1)-dimensional
Lebesgue measure on ∂Ω.

We are almost able to define what a restriction on ∂Ω means for a general function belonging
to a Sobolev space. We will focus here only on the space H1(Ω) and its subset H1

0 (Ω).
Suppose that u ∈ H1(Ω) (i.e. u,Du ∈ L2(Ω)). Then if we want non-zero boundary conditions,

say u|∂Ω = g where g is a given function, we need to sacrifice some regularity (to be precise, we
loose “half” derivative) when we apply the restriction operation.

Definition 30. Given abounded domain Ω ⊂ Rn and ∂Ω =: Γ ⊂ Rn−1, we define

H
1
2 (Γ) :=

{
u ∈ L2(Γ)

∣∣∣∣∣ |u(x)− u(y)|
|x− y|

1
2

+n
2

∈ L2(Γ× Γ)

}
.

Remark 31. It is possible to define fractional Sobolev spaces Hθ(Γ) for 0 < θ < 1 on the regular
manifold Γ = ∂Ω by using local charts (diffeomorphism).

We can now conclude by stating one version of the Trace Theorem that guarantees that the
restriction operation for H1(Ω)-functions is well-defined.

Theorem 32 (Trace Theorem). Let Ω ⊂ Rn be a bounded domain, sufficiently smooth. Then,
there exists the trace operator

γ0 : H1(Ω)→ H
1
2 (Γ)

u 7→ u|Γ =: γ0u (30)

with the following properties

1) γ0 is a linear, bounded, continuous and surjective operator

2) ker γ0 = H1
0 (Ω)

3) Green’s formula holds: ∀ u, v ∈ H1(Ω)∫
Ω

∂u

∂xj
v dx =

∫
Γ

(γ0u) (γ0v) νj dσ −
∫

Ω
u
∂v

∂xj
dx

where νj is the j-th component of the outer normal ~ν and dσ is the Lebesgue measure on
Γ ⊂ Rn−1.

We state one last Trace Theorem that is fundamental for studying well-known PDEs of second
order (wave equation, heat equation, etc.)
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Theorem 33 (Trace Theorem). Let Ω ⊂ Rn be a bounded domain, sufficiently smooth. Then,
there exists the trace operator

γ : H2(Ω)→ H
3
2 (Γ)×H

1
2 (Γ)

u 7→
(
u|Γ,

∂u

∂~ν

∣∣∣∣
Γ

)
=: γu (31)

with the following properties

1) γ0 is a linear, bounded, continuous and surjective operator

2) ker γ = H2
0 (Ω)

3) Green’s formula holds: ∀ u, v ∈ H2(Ω)∫
Ω

∆u v dx =

∫
Γ

∂u

∂~ν
v dσ −

∫
Ω
∇u∇v dx

where νj is the j-th component of the outer normal ~ν and dσ is the Lebesgue measure on
Γ ⊂ Rn−1.
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