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1  Quick recall

We recall here the main facts about power series. A detailed description of the topic has been
covered a few weeks ago and it refers to the Section 2.6.5 of the textbook.

Definition 1. Let {a,} be a sequence of real numbers and ¢ € R. The power series centered at
¢ with coefficients {a,} is the function

+oo
Z an(x —c)".
n=0

Every power series is a function defined on a certain domain (called interval of convergence)
that is identified by the radius of convergence R:

Theorem 2. Let
“+00
f(z) = Z an(z —c)"
n=0

be a power series. There exists a constant R € RU {400} such that the series converges absolutely

for |z —c| < R (i.e. for any x € (¢ — R,c+ R)) and diverges for |z —c| > R.

Theorem 3 (Hadamard’s Theorem). The radius of convergence R of the power series f(x) :=
0 an(z — )" is given by

1

lim SUPp— 400 n\/ ‘an’ .

Remark 4. The radius of convergence of a power series can also be calculated as
1

R

R= .
an+41
an
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2 Abel’s Theorem

From the theorems above we have that given a power series, the series converges absolutely for any
point z in the open interval (¢ — R, ¢ 4+ R), however no information is given about what happens
at the endpoints x = ¢ = R and in general the series may converges or diverges there.

On the other end, suppose that we have a power series (say, centered at ¢ = 0)

with radius of convergence R (therefore the series converges for any =z € (—R, R)) and suppose that
for example the series Y o2 a,R™ < +00. How do we know that

f(R) = i anR™?
n=0

(i.e. we just plug the value R into the definition of the power series)
To state the problem in a more correct way, we need to prove that assuming that > > ja, R" <
400, then

o
: _ n
xgrgi f(z) = nz_:OanR .

The following theorem has a positive answers to this problem. We are considering here the
simple(r) case where the center of the series is ¢ = 0, the radius of convergence is R = 1 and we’ll
be checking only the right end point of the interval of convergence, namely z = 1.

The result can be easily generalized to any power series centered at a point ¢ € R with radius
of convergence R > 0 and with x equal either one of the endpoints of the interval of convergence.

Theorem 5 (Abel’s Theorem). Let f(z) := :{i% anx™ a power series with radius of convergence
R=1.If> > a, < 400, then

rz—1_

lim f(x)= Zan.
n=0

Proof. The main tool used here will be the summation by parts formula for two finite sequences

{ui,...,u,} and {vg,...,v,}:
n n—1
> up(vp — vp—1) = Unvn —urvo — Y vp(tp1 — w)
k=1 k=1

1. We know that ) >° a, < 400, meaning that the sequence of partial sums {s, := > ;_;an}
converges (s, — S). We recall also that a,, = s,, — s,—1 for all n € N and ay = so.

Now, we will use the summation by parts formula for u; = 2% and v = sp,

n n n—1
Z apz® = ag + Z(sk - sk,l):):k =ag + spx" — SoT — Z sk(:):k+1 — :):k)
k=0 k=1 k=1
n—1 n—1
=ap(l —x) + spa” + Z sp(l — z)z® = s,z + Z sp(l —z)z”
k=1 k=0



This chain of equality is always valid and additionally we know that for any |z| < 1 the left
hand side of the identity is (absolutely) convergent. Also, the term s,z — 0 as n — +o0,
because " — 0 (Jz| < 1) and the sequence of partial sums {s,} of the (numeric series) > ap
is convergent, therefore it is bounded.

Taking the limit as £ — +o0o on both sides, we have
o (0.9}
Z ape® = (1 —z) Z spat.
k=0 k=0

2.1 S = Y an = lim, 400 S, is the sum of the (numeric) series, we want to show that
Yol ganz™ — Sasx /1 first of all

Zan:c”fS: (1*56)257“%” -S=(1 fx)Z(snfS)x"
n=0 n=0 n=0

the second equality comes from the fact that (1 — z)>°° 2" = (1 — )= = 1, geometric
n=0 11—z
series).

3. Then, since s,, — S, this means that V e > 0 3 M, € N such that |s, — S| < € for n > M,; so, we
fix € > 0 and we split the series (the first term will be a just a finite sum, therefore bounded)

o) Me—1 [e%)
1=2)) (sn= 2" <1 =2) Y |sn—S||z[*+ (X —2) Y [sn— 9| |2|" <
n=0 n=0 n=»M.
<U—2)K +(1—2)e S Jal" = (1—90)K+(1—$)61_1m

n=0
where we don’t write |1 — x| because |z| < 1; also, since we want to take the limit as = 7 1_,

we can assume that 0 < x < 1. In conclusion,

o0

(1—2)> (sn—S)a"

n=0

<K(l—-z)+e—0.

Example 1. The series

has radius of convergence

R= = _=1

. limsu n n
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so it converges for |z — 1] < 1 and it diverges for |z — 1| > 1. We still need to check the endpoints,
ie. z=0and z = 2.

For x = 2 the power series becomes an alternating harmonic series f(2) = > > | (_17):“ which
converges thanks to Leibniz’s rule. For x = 0, the series become

X 1\n+l X 1\2n o
o=y T ey B
n=1

n=1 n=1

which is a harmonic series and therefore diverges.
In conclusion, the interval of convergence is (0, 2].

Example 2. The series

has coefficients

1 ifn=2k
Ay =
0 ifn#2F

and its radius of convergence is equal to
1

limsup,, ;o V/|an| B

so it converges for |z| < 1 and it diverges for |z| > 1.
At the endpoints we have that f(1) = f(—1) = >_.7 ,(—1)" which is clearly a divergent series.
Therefore the interval of convergence is (—1,1).

R= 1

Note 6. This series is called lacunary power series because there are successively longer gaps
(“lacuna”) between the powers with non-zero coefficients.

3 Differentiation and Integration of Power series

We will now tackle the problem of differentiating and integrating power series.

Theorem 7 (Term-by-term differentiation of a power series). Suppose that the power series

F@) = an(e—o)"
n=0

has radius of convergence R. Then the power series

gx) = > nan(e — )"
n=1

is well defined and it also has radius of convergence R.
Moreover, the power series f is differentiable Va € (¢ — R,c+ R) and we have the identity

J(@) = gle) = 3 nan(e — ",
n=1
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We will see only the proof of the first part of the theorem here. To prove that the power series
g is indeed the derivative of the power series f some extra tools from Analysis are required, that
we don’t possess at the moment.

Proof. Assume without loss of generality that ¢ = 0. Let |x| < R: this implies (least upper bound
properties of the set R) that there exists p > 0 such that |z| < p < R and let
|z

r:=—¢(0,1).
5 (0,1)

To estimate the terms in the differentiated power series by the terms in the original series, we write

n—1 n |SL“ nt n n,r,n—l n
Inanz" [ == — |an|p"™ = |an|p
p\p p

-1

The series Y 2, nr"~! converges by ratio test, since

1
lim ————— = lim <1+ >=7“<1
n—oo  prh—l n—00
therefore the sequence {nr" !} is bounded (it actually goes to zero): —M < nr"~! < M, Vn € N.

Therefore,

n—1 M
=T anlp” < Tlanlp”  VneN
p p

}nana:”

and the series ) |an|p™ converges since p < R (remember that for all |x| < R the power series
converges absolutely).

Finally, the comparison test implies that > na,x converges absolutely.

Conversely, suppose that |z| > R, then >’ |a,|z™ diverges (since Y a,z™ diverges) and

n—1

1
[nanz" | > — |ana”| Vn eN,

|z

so the comparison test implies that > na,2™ ! diverges.
In conclusion, the power series g(x) = > o0 | na,(z — ¢)" ! has the same radius of convergence
R as the power series f. O

Similarly, using the theorem above and the fundamental theorem of calculus, the following
theorem for integration of power series can be proven.

Theorem 8 (Term-by-term integration of a power series). Suppose that the power series

= Z an(z —c)"
n=0

has radius of convergence R. Then the power series

+1

(x — )"
Zan " +C

is well defined and it also has radius of convergence R.
Moreover, the power series g is one anti-derivative of the power series f.



Example 1. Find a power series representation for the function (wherever it makes sense)

1
f(x):m-

(1_1x>2=[1i$]/

and for |z| < 1 (geometric series; its radius of convergence is R = 1)
11—z '
n=0

Therefore, for |z| < 1 (the radius of convergence is also equal 1)

‘We have that

1 00 / 00 9]
1-2)2 [Z xn] = na" =) (n+ 1z,
n=0 n=0 n=0

Example 2. Find a power series representation for the function (wherever it makes sense)
f(z) = arctan(x).

‘We know that

arctan(x):/ de

1+ 22

and for |z| < 1 (geometric series; its radius of convergence is R = 1)

o

1 1
T+a2 1-— (—ax?) - Z(il)nx%'

n=0

Therefore, for |z| < 1 (the radius of convergence is also equal 1)

x2n+1

al"Ctan(x) = /Y;O(_l)nx%z — C+nZ:0(_1)n/$2ndx _ C+TLZ:(](_1)n2n+ :

and since arctan(0) = 0, then C' = 0. In conclusion,

o0 x2n+1
arctan(z) = Z(—l)" 1
n=0

with radius of convergence equal 1.



	Quick recall
	Abel's Theorem
	Differentiation and Integration of Power series

