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1 Quick recall

We recall here the main facts about power series. A detailed description of the topic has been
covered a few weeks ago and it refers to the Section 2.6.5 of the textbook.

Definition 1. Let {an} be a sequence of real numbers and c ∈ R. The power series centered at
c with coefficients {an} is the function

+∞∑
n=0

an(x− c)n.

Every power series is a function defined on a certain domain (called interval of convergence)
that is identified by the radius of convergence R:

Theorem 2. Let

f(x) :=

+∞∑
n=0

an(x− c)n

be a power series. There exists a constant R ∈ R∪ {+∞} such that the series converges absolutely
for |x− c| < R (i.e. for any x ∈ (c−R, c+R)) and diverges for |x− c| > R.

Theorem 3 (Hadamard’s Theorem). The radius of convergence R of the power series f(x) :=∑+∞
n=0 an(x− c)n is given by

R =
1

lim supn→+∞
n
√
|an|

.

Remark 4. The radius of convergence of a power series can also be calculated as

R =
1

limn→+∞

∣∣∣an+1

an

∣∣∣ .
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2 Abel’s Theorem

From the theorems above we have that given a power series, the series converges absolutely for any
point x in the open interval (c − R, c + R), however no information is given about what happens
at the endpoints x = c±R and in general the series may converges or diverges there.

On the other end, suppose that we have a power series (say, centered at c = 0)

f(x) :=
+∞∑
n=0

anx
n

with radius of convergence R (therefore the series converges for any x ∈ (−R,R)) and suppose that
for example the series

∑∞
n=0 anR

n < +∞. How do we know that

f(R) =
∞∑
n=0

anR
n?

(i.e. we just plug the value R into the definition of the power series)
To state the problem in a more correct way, we need to prove that assuming that

∑∞
n=0 anR

n <
+∞, then

lim
x→R−

f(x) =

∞∑
n=0

anR
n.

The following theorem has a positive answers to this problem. We are considering here the
simple(r) case where the center of the series is c = 0, the radius of convergence is R = 1 and we’ll
be checking only the right end point of the interval of convergence, namely x = 1.

The result can be easily generalized to any power series centered at a point c ∈ R with radius
of convergence R > 0 and with x equal either one of the endpoints of the interval of convergence.

Theorem 5 (Abel’s Theorem). Let f(x) :=
∑+∞

n=0 anx
n a power series with radius of convergence

R = 1. If
∑∞

n=0 an < +∞, then

lim
x→1−

f(x) =
∞∑
n=0

an.

Proof. The main tool used here will be the summation by parts formula for two finite sequences
{u1, . . . , un} and {v0, . . . , vn}:

n∑
k=1

uk(vk − vk−1) = unvn − u1v0 −
n−1∑
k=1

vk(uk+1 − uk)

1. We know that
∑∞

n=0 an < +∞, meaning that the sequence of partial sums {sn :=
∑n

k=0 an}
converges (sn → S). We recall also that an = sn − sn−1 for all n ∈ N and a0 = s0.

Now, we will use the summation by parts formula for uk = xk and vk = sk
n∑
k=0

akx
k = a0 +

n∑
k=1

(sk − sk−1)xk = a0 + snx
n − s0x−

n−1∑
k=1

sk(x
k+1 − xk)

= a0(1− x) + snx
n +

n−1∑
k=1

sk(1− x)xk = snx
n +

n−1∑
k=0

sk(1− x)xk
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This chain of equality is always valid and additionally we know that for any |x| < 1 the left
hand side of the identity is (absolutely) convergent. Also, the term snx

n → 0 as n → +∞,
because xn → 0 (|x| < 1) and the sequence of partial sums {sn} of the (numeric series)

∑
n an

is convergent, therefore it is bounded.

Taking the limit as k → +∞ on both sides, we have

∞∑
k=0

akx
k = (1− x)

∞∑
k=0

skx
k.

2. If S =
∑∞

n=0 an = limn→+∞ sn is the sum of the (numeric) series, we want to show that∑∞
n=0 anx

n → S as x↗ 1−: first of all

∞∑
n=0

anx
n − S = (1− x)

∞∑
n=0

snx
n − S = (1− x)

∞∑
n=0

(sn − S)xn

(the second equality comes from the fact that (1 − x)
∑∞

n=0 x
n = (1 − x) 1

1−x = 1, geometric
series).

3. Then, since sn → S, this means that ∀ ε > 0 ∃ Mε ∈ N such that |sn−S| < ε for n ≥Mε; so, we
fix ε > 0 and we split the series (the first term will be a just a finite sum, therefore bounded)∣∣∣∣∣(1− x)

∞∑
n=0

(sn − S)xn

∣∣∣∣∣ ≤ (1− x)

Mε−1∑
n=0

|sn − S| |x|n + (1− x)
∞∑

n=Mε

|sn − S| |x|n ≤

≤ (1− x)K + (1− x)ε

∞∑
n=0

|x|n = (1− x)K + (1− x)ε
1

1− |x|

where we don’t write |1 − x| because |x| < 1; also, since we want to take the limit as x ↗ 1−,
we can assume that 0 < x < 1. In conclusion,∣∣∣∣∣(1− x)

∞∑
n=0

(sn − S)xn

∣∣∣∣∣ ≤ K(1− x) + ε→ 0.

Example 1. The series

f(x) =
∞∑
n=1

(−1)n+1

n
(x− 1)n

has radius of convergence

R =
1

lim supn→+∞
n

√∣∣∣ (−1)n+1

n

∣∣∣ =
1

lim supn→+∞ n
− 1
n

= 1
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so it converges for |x− 1| < 1 and it diverges for |x− 1| > 1. We still need to check the endpoints,
i.e. x = 0 and x = 2.

For x = 2 the power series becomes an alternating harmonic series f(2) =
∑∞

n=1
(−1)n+1

n which
converges thanks to Leibniz’s rule. For x = 0, the series become

f(0) =
∞∑
n=1

(−1)n+1

n
(−1)n = −

∞∑
n=1

(−1)2n

n
= −

∞∑
n=1

1

n

which is a harmonic series and therefore diverges.
In conclusion, the interval of convergence is (0, 2].

Example 2. The series

f(x) =
∞∑
n=0

(−1)nx2
n

= x− x2 + x4 − x8 + x16 − x32 + . . .

has coefficients

an =

{
1 if n = 2k

0 if n 6= 2k

and its radius of convergence is equal to

R =
1

lim supn→+∞
n
√
|an|

= 1

so it converges for |x| < 1 and it diverges for |x| > 1.
At the endpoints we have that f(1) = f(−1) =

∑∞
n=0(−1)n which is clearly a divergent series.

Therefore the interval of convergence is (−1, 1).

Note 6. This series is called lacunary power series because there are successively longer gaps
(“lacuna”) between the powers with non-zero coefficients.

3 Differentiation and Integration of Power series

We will now tackle the problem of differentiating and integrating power series.

Theorem 7 (Term-by-term differentiation of a power series). Suppose that the power series

f(x) =
∞∑
n=0

an(x− c)n

has radius of convergence R. Then the power series

g(x) =
∞∑
n=1

nan(x− c)n−1

is well defined and it also has radius of convergence R.
Moreover, the power series f is differentiable ∀x ∈ (c−R, c+R) and we have the identity

f ′(x) = g(x) =

∞∑
n=1

nan(x− c)n−1.

4



We will see only the proof of the first part of the theorem here. To prove that the power series
g is indeed the derivative of the power series f some extra tools from Analysis are required, that
we don’t possess at the moment.

Proof. Assume without loss of generality that c = 0. Let |x| < R: this implies (least upper bound
properties of the set R) that there exists ρ > 0 such that |x| < ρ < R and let

r :=
|x|
ρ
∈ (0, 1).

To estimate the terms in the differentiated power series by the terms in the original series, we write

|nanxn−1| =
n

ρ

(
|x|
ρ

)n−1
|an|ρn =

nrn−1

ρ
|an|ρn

The series
∑∞

n=1 nr
n−1 converges by ratio test, since

lim
n→∞

(n+ 1)rn

nrn−1
= lim

n→∞
r

(
1 +

1

n

)
= r < 1

therefore the sequence {nrn−1} is bounded (it actually goes to zero): −M ≤ nrn−1 < M , ∀n ∈ N.
Therefore, ∣∣nanxn−1∣∣ =

nrn−1

ρ
|an|ρn ≤

M

ρ
|an|ρn ∀n ∈ N

and the series
∑
|an|ρn converges since ρ < R (remember that for all |x| < R the power series

converges absolutely).
Finally, the comparison test implies that

∑
nanx

n−1 converges absolutely.
Conversely, suppose that |x| > R, then

∑
|an|xn diverges (since

∑
anx

n diverges) and∣∣nanxn−1∣∣ ≥ 1

|x|
|anxn| ∀n ∈ N,

so the comparison test implies that
∑
nanx

n−1 diverges.
In conclusion, the power series g(x) =

∑∞
n=1 nan(x− c)n−1 has the same radius of convergence

R as the power series f .

Similarly, using the theorem above and the fundamental theorem of calculus, the following
theorem for integration of power series can be proven.

Theorem 8 (Term-by-term integration of a power series). Suppose that the power series

f(x) =
∞∑
n=0

an(x− c)n

has radius of convergence R. Then the power series

g(x) =
∞∑
n=0

an
(x− c)n+1

n+ 1
+ C

is well defined and it also has radius of convergence R.
Moreover, the power series g is one anti-derivative of the power series f .
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Example 1. Find a power series representation for the function (wherever it makes sense)

f(x) =
1

(1− x)2
.

We have that

1

(1− x)2
=

[
1

1− x

]′
and for |x| < 1 (geometric series; its radius of convergence is R = 1)

1

1− x
=

∞∑
n=0

xn.

Therefore, for |x| < 1 (the radius of convergence is also equal 1)

1

(1− x)2
=

[ ∞∑
n=0

xn

]′
=

∞∑
n=0

nxn−1 =

∞∑
n=0

(n+ 1)xn.

Example 2. Find a power series representation for the function (wherever it makes sense)

f(x) = arctan(x).

We know that

arctan(x) =

∫
dx

1 + x2

and for |x| < 1 (geometric series; its radius of convergence is R = 1)

1

1 + x2
=

1

1− (−x2)
=
∞∑
n=0

(−1)nx2n.

Therefore, for |x| < 1 (the radius of convergence is also equal 1)

arctan(x) =

∫ ∞∑
n=0

(−1)nx2n = C +

∞∑
n=0

(−1)n
∫
x2ndx = C +

∞∑
n=0

(−1)n
x2n+1

2n+ 1

and since arctan(0) = 0, then C = 0. In conclusion,

arctan(x) =
∞∑
n=0

(−1)n
x2n+1

2n+ 1

with radius of convergence equal 1.
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