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1 Definition

Definition 1 (formal). Given a sequence {xn}+∞n=1, we define a series as the formal sum of all its
elements and we use the following notation:

+∞∑
n=1

xn.

In general, a series is just a formal object, a symbol. We can then wonder whether this symbol
represents a real quantity (a number), namely if we can indeed sum all the elements of a given
sequence {xn}.

Definition 2. Given a sequence {xn}, we can define the partial sum of order n as the sum of all
the first n elements of the sequence:

sn :=
n∑
k=1

xk.

i.e.

s1 = x1

s2 = x1 + x2

s3 = x1 + x2 + x3

s4 = x1 + x2 + x3 + x4

...

Remark 3. We can observe that there is a one-to-one correspondence between the elements of the
sequence {xn} and the partial sums, since any partial sum of order n is constructed iteratively from
the previous partial sum of order n− 1 and the term xn:

sn = x1 + x2 + . . .+ xn−1 + xn = sn−1 + xn ⇔ xn = sn − sn−1 ∀ n ≥ 2

This means that if we only know the sequence of partial sums {sn} we can still recover the original
sequence {xn} by calculating each term as x1 = s1 and xn = sn − sn−1 for n ≥ 2.
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Definition 4 (rigorous). Given a sequence {xn}, a series with general term xn is denoted as∑+∞
n=1 xn and it is defined as the limit of the sequence of its partial sums:

+∞∑
n=1

xn := lim
n→+∞

sn.

A series is convergent if limn→+∞ sn = S exists and it’s a real number S which will be called
sum of the series. If limn→+∞ sn = ±∞, then the series is said to be divergent. These two
types of series are generically called regular series.

If limn→+∞ sn does not exist, the series is called irregular.

Note 5. Sometimes it might be more convenient to shift the starting point of the index from 1 to
0 or another number. For example

+∞∑
n=1

1

2n−1
=

+∞∑
k=0

1

2k
= 1 +

1

2
+

1

4
+ . . .

Example 1. Consider the constant sequence {xn = c} (c ∈ R), then the sequence of partial sums
has general term

sn = c+ c+ c+ . . .+ c = nc;

therefore,

lim
n→+∞

sn = lim
n→+∞

nc =


+∞ if c > 0

−∞ if c < 0

0 if c = 0

The series
∑∞

n=1 c is convergent if c = 0 and divergent in all the other cases.

Example 2. Consider the alternating sequence {xn = (−1)n}, the the partial sum of order n is
equal to

sn = −1 + 1− 1 + 1− 1 . . . =

{
−1 if n = odd

0 if n = even

therefore limn→+∞ sn does not exists and the series
∑∞

n=1(−1)n is irregular.

Exemple 3. Consider the sequence {xn = n}. The partial sums are given as

sn = 1 + 2 + 3 + . . .+ (n− 1) + n =
n∑
k=1

k =
n(n+ 1)

2

and clearly

lim
n→+∞

sn = lim
n→+∞

n(n+ 1)

2
= +∞

therefore the series
∑+∞

n=1 n is divergent.
In these three examples it was easy to explicitly calculate the sequence of partial sums and

its limit, but this is not always the case. We will see later on more general “convergence test” to
establish the behaviour of a series.
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2 General properties

The main aspects that one wishes to study about a series are

1) to determine what is the behaviour of the series, i.e. whether it is convergent, divergent or
irregular;

2) in the case where the series it’s convergent, to calculate the sum.

For most of the cases, already establishing the first bullet is a hard task. Determine the sum of
a series is usually even harder, if not impossible with the tools we know right now.

Proposition 6. If
∑∞

n=1 an and
∑∞

n=1 bn are two series with the same general term, except for a
finite number of indexes, then the two series have the same behaviour.

Proof. If the series differ by a finite number of indexes, there exist an index N such that for all the
indexes after N the terms are the same: an = bn ∀ n ≥ N .

Therefore, if we consider the (respective) partial sums sn =
∑n

k=1 ak and tn :=
∑n

k=1 tk and
calculate their difference

sN+m − tN+m =
N+m∑
k=1

ak −
N+m∑
k=1

bk =
N+m∑
k=1

ak − bk =
N∑
k=1

ak − bk =: κ ∀ m ≥ 0

This implies that the sequence {sn − tn}∞n=1 is constant (equal to κ), up to a finite number of
terms; its limit exists limn→+∞ sn − tn = κ and the respective series have the same behaviour.

Note 7. Even if both of the series in the proposition above happen to be convergent, their sum is
different!

We will see now a first necessary condition for a series to be convergent.

Proposition 8. If the series
∑∞

n=1 xn is convergent, then limn→+∞ xn = 0.

Proof. Given that the series is convergent, we denote by S its sum: S :=
∑∞

n=1 xn = limn→+∞ sn,
meaning that the sequence of partial sums converges to S. Then, we have

xn = sn − sn−1 → S − S = 0.

Examples.

1) We saw already that the series
∑∞

n=1(−1)n is irregular. Indeed, its general term is (−1)n which
does not converge to 0.

2) Also the series
∑∞

n=1 2−
1
n does not converge because 2−

1
n = 1

2
1
n
→ 1 6= 0.

Be careful, though! The proposition above only gives a criterion to quickly spot some series
that are not convergent (in particular, the ones whose general term doesn’t go to zero); on the
other hand, if we are given a series with general term that goes to zero, we still cannot conclude
that the series is convergent.

3



Counterexamples.

1) consider the Harmonic Series
∞∑
n=1

1

n
.

Although its general term is 1
n → 0 as n→ +∞, the series is divergent.

To see this, suppose it’s convergent and call S the sum of the series. Then,

S = 1 +
1

2
+

1

3
+

1

4
+

1

5
+

1

6
+

1

7
+

1

8
+ . . .

> 1 +
1

2
+

(
1

4
+

1

4

)
+

(
1

6
+

1

6

)
+

(
1

8
+

1

8

)
+ . . . = 1 +

1

2
+

1

2
+

1

3
+

1

4
+ . . .

=
1

2
+ S

this leads to S > 1
2 + S, which is a contradiction.

2) Consider the series
∞∑
n=1

1√
n+ 1 +

√
n
.

Also in this case the general term xn = 1√
n+1+

√
n
→ 0, but the series is not convergent. Indeed,

1√
n+ 1 +

√
n

=
1√

n+ 1 +
√
n

√
n+ 1−

√
n√

n+ 1−
√
n

=

√
n+ 1−

√
n

n+ 1− n
=
√
n+ 1−

√
n

and the partial sums are telescopic sums (meaning, all the terms in the summation cancel out
except the first one and the last one)

sn =
(√

2−
√

1
)

+
(√

3−
√

2
)

+
(√

4−
√

3
)

+ . . .+
(√
n−
√
n− 1

)
+
(√
n+ 1−

√
n
)

=
√
n+ 1− 1→ +∞ as n→ +∞.

A necessary and sufficient condition for a series to be convergent is the Cauchy condition.

Definition 9. A series
∑∞

n=1 xn is Cauchy if the sequence of partial sums {sn} is a Cauchy
sequence.

Proposition 10 (Cauchy criterion). A series
∑∞

n=1 xn is convergent ⇔ the series is Cauchy.

Proof. By definition of a convergent series,
∑∞

n=1 xn is convergent ⇔ the sequence of partial sums
{sn} converges. We also know that a convergent sequence is equivalent to say that the sequence is
a Cauchy sequence, therefore (by the definition above) the series is Cauchy.

Corollary 11. A (Cauchy) series is such that ∀ ε > 0 ∃Mε ∈ N such that ∀ n,m ≥Mε we have

|sn − sm| < ε,

meaning (assume without lost of generality that n > m)

|sn − sm| =

∣∣∣∣∣
n∑
k=1

xk −
m∑
k=1

xn

∣∣∣∣∣ =

∣∣∣∣∣
n∑

k=m+1

xn

∣∣∣∣∣ < ε.
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The Cauchy criterion is not very handy to use in practical situations. Therefore, we will now
see other conditions (only sufficient) that can guarantee convergence of a series.

3 Absolute convergence

Definition 12. A series
∑∞

n=1 xn is absolute convergent if
∑∞

n=1 |xn| is convergent.

Remark 13. If a series
∑∞

n=1 xn converges, but not absolutely (i.e. the series of the absolute
values of its terms doesn’t converge), then we say that the series converges simply.

Remark 14. If the general terms of the series are non-negative (xn ≥ 0 ∀ n ≥ 1), then
∑∞

n=1 xn =∑∞
n=1 |xn| and the concept of simple convergence ad absolute converges coincide.

Proposition 15. Absolute convergence implies simple convergence, meaning that if
∑∞

n=1 |xn|
converges, then also

∑∞
n=1 xn converges.

Proof. If
∑∞

n=1 |xn|, this means that the series satisfies the Cauchy condition: ∀ ε > 0 ∃Mε ∈ N
such that ∀ n,m ≥Mε ∣∣∣∣∣

n∑
m+1

|xn|

∣∣∣∣∣ < ε.

On the other hand, by triangle inequality,∣∣∣∣∣
n∑

m+1

xn

∣∣∣∣∣ ≤
∣∣∣∣∣
n∑

m+1

|xn|

∣∣∣∣∣ < ε,

meaning that also the series
∑∞

n=1 xn is Cauchy, therefore convergent.

Examples.

1) The series
∞∑
n=1

(−1)n

n

is simply convergent (see Leibniz criterion later in the notes), but it’s not absolutely convergent
because the series of absolute values is the harmonic series

∑∞
n=1

1
n , which we know to be

divergent.

2) The series
∞∑
n=1

cos(n)

n2

where the general term has a sign that is difficult to identify (it varies according to the cosine)
is absolutely convergent (see Integral test later in the notes).
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4 Constant sign series

Let’s assume that the general term of a series is always non-negative: xn ≥ 0 for all n ∈ N (all the
arguments below can be analogously carried out in the case xn ≤ 0).

In this case we can already notice that the sequence of partial sums {sn} is monotone increasing
and therefore {sn} is convergent ⇔ {sn} is bounded.

Also, in this case, the series
∑∞

n=1 xn can only be regular, i.e. either convergent or divergent to
±∞.

We will see now a list of convergence test that will allow us to establish the behaviour of a
series. It is follows that if a series

∑∞
n=1 xn has general term xn with non-constant sign, we can

always inspect whether the series is absolutely convergent by considering the series of absolute
values

∑∞
n=1 |xn| and this series is clearly of constant (positive) sign.

Proposition 16 (Comparison test). Consider two sequences {an} and {bn} such that 0 ≤ an ≤
bn for all n ∈ N, then

1) if
∑∞

n=1 bn converges, then also
∑∞

n=1 an converges;

2) if
∑∞

n=1 an diverges, then also
∑∞

n=1 bn diverges.

Proof. Since we have the inequality 0 ≤ an ≤ bn, then also the partial sums have the same
behaviour:

0 ≤ sn ≤ tn
and, passing to the limit, we have

∞∑
n=1

an = lim
n→+∞

sn ≤ lim
n→+∞

tn =
∞∑
n=1

bn.

We then apply the comparison test for limits of sequences.

Corollary 17. If there exist two constant c, C ∈ R+ such that can ≤ bn ≤ Can for all n ∈ N, then
the series

∑∞
n=1 an and

∑∞
n=1 bn have the same behaviour.

Proposition 18 (Integral test). Suppose we have a function f : [1,+∞)→ R such that f(x) ≥ 0
for all x ∈ [1,+∞) and f is monotone decreasing over [1,+∞). Then,∫ +∞

1
f(x) dx and

+∞∑
n=1

f(n)

have the same behaviour (they are both convergent of both divergent).

Proof. Consider the integral of f over the interval [k, k + 1] for any k ∈ N:∫ k+1

k
f(x)dx ≤ max

x∈[k,k+1]
f(x) ·

∫ k+1

k
dx = f(k) · 1 = f(k)

and ∫ k+1

k
f(x)dx ≥ min

x∈[k,k+1]
f(x) ·

∫ k+1

k
dx = f(k + 1) · 1 = f(k + 1),
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therefore

f(k + 1) ≤
∫ k+1

k
f(x)dx ≤ f(k)

and summing over the k’s from 1 to n− 1:

sn − f(1) =

n−1∑
k=1

f(k + 1) ≤
n−1∑
k=1

∫ k+1

k
f(x)dx =

∫ n

1
f(x)dx ≤

n−1∑
k=1

f(k) = sn−1 ≤ sn

The last inequality follows from the fact that f(n) ≥ 0 for all n ∈ N, therefore sn = f(n) + sn−1 ≥
sn−1.

Passing to the limit

lim
n→+∞

sn − f(1) ≤ lim
n→+∞

∫ n

1
f(x)dx =

∫ +∞

1
f(x)dx ≤ lim

n→+∞
sn

and applying the comparison test for sequences yields the result.

5 Important examples

Geometric series: let q ∈ R, define
∞∑
n=0

qn = 1 + q + q2 + q3 + . . .

Proposition 19. a) If |q| < 1, then the series is convergent and its sum is equal to

∞∑
n=0

qn =
1

1− q
.

b) If q ≥ 1, then the series diverges.

c) If q ≤ −1, then the series is irregular.

Proof. If q = 1, then the sequence of partial sums have general term equal to sn = 1 + 1 + 1 + 1 +
. . .+ 1 = n · 1 = n, which is clearly unbounded and diverging to +∞. If q = −1, then the general
partial sum is sn = −1 + 1− 1 + 1 + . . . and it is equal to zero if n is even or 1 is n is odd, therefore
the sequence {sn} admits no limit.

For q 6= ±1, we can write the partial sums as

sn = 1 + q + q2 + q3 + . . .+ qn =

(
1 + q + q2 + q3 + . . .+ qn

)
(1− q)

1− q

=
1− qn+1

1− q
and passing to the limit

lim
n→+∞

sn = lim
n→+∞

1− qn+1

1− q
=


1

1−q if |q| < 1

+∞ if q ≥ 1

no limit if q ≤ −1
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Generalized Harmonic Series: let p ∈ R, define

∞∑
n=1

1

np
= 1 +

1

2p
+

1

3p
+

1

4p
+ . . .

Proposition 20. a) If p > 1, then the series is convergent.

b) If p ≤ 1, then the series diverges.

Proof. If p < 0, then the general term 1
np does not converges to zero, therefore the series cannot

be convergent. If p = 1 we already know that the Harmonic series
∑ 1

n is divergent. For p > 0
(p 6= 1), use the Integral test with the function f(x) = 1

xp (f is positive and monotone decreasing
on the interval [1,+∞)):∫ +∞

1

1

xp
dx = lim

n→+∞

∫ n

1

1

xp
dx = lim

n→+∞

[
x−p+1

−p+ 1

]n
1

= lim
n→+∞

1

1− p
[
n1−p − 1

]
=

{
+∞ if 0 < p < 1
1
p−1 if p > 1

Therefore, the series
∑∞

n=1
1
np converges for p > 1 and diverges for all the other cases.

Note 21. Be careful! The value of the (indefinite) integral
∫ +∞
1

1
xpdx is 1

p−1 , but this is not the
sum of the series! When using the integral test, we only care to check whether the integral converges
to a number (any number) or not. The integral test doesn’t give us the sum of a series.

Remark 22. It is possible to prove (but using much more advanced techniques that won’t be shown
in the present course) that

+∞∑
n=1

1

n2
=
π2

6
.

Mengoli series:
+∞∑
n=1

1

n(n+ 1)

The general term can be rewritten in a more convenient form: xn = 1
n(n+1) = 1

n −
1

n+1 . This allows

us to explicitly calculate the partial sums (which are again telescopic sum) and even calculate the
sum of the series:

sn =

(
1− 1

2

)
+

(
1

2
− 1

3

)
+

(
1

3
− 1

4

)
+ . . .+

(
1

n
− 1

n+ 1

)
= 1− 1

n+ 1
→ 1

therefore, the Mengoli series is convergent and

+∞∑
n=1

1

n(n+ 1)
= lim

n→+∞
sn = 1.
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Another example with the Integral Test: the series

+∞∑
n=1

1

np (lnn)q

is convergent for either p > 1 and any q ∈ R+ or for p = 1 and q > 1. To see this result, we can
apply again the Integral Test with the function f(x) = 1

xp(lnx)q
.

6 Constant sign series - part II

Proposition 23 (Ratio Test). Let {xn} be a positive sequence (xn ≥ 0 for all n ∈ N), then

a) if lim sup xn+1

xn
< 1, then the series

∑∞
n=1 xn converges;

b) if xn+1

xn
≥ 1 (up to finitely many indexes), then the series diverges.

Proof. a) Remember the definition of lim sup:

lim sup
n→+∞

xn+1

xn
= lim

n→+∞
an = lim

n→+∞
sup

{
x`+1

x`

∣∣∣∣ ` ≥ n} < 1

Therefore there exists ε > 0 such that lim supn→+∞
xn+1

xn
< ε < 1. For such ε, there exists

Mε ∈ N such that for all n ≥Mε

xn+1

xn
≤ aMε := sup

{
x`+1

x`

∣∣∣∣ ` ≥Mε

}
< ε < 1

meaning that ∀ n ≥Mε

xn ≤ εxn−1 < ε2xn−2 < . . . < εn−MεxMε .

Summing over all the terms in the sequence {xn}, the series is bounded from above by a geometric
series with general term ε < 1 (therefore it is convergent)

∞∑
n=1

xn =

Mε−1∑
n=1

xn +

∞∑
n=Mε

xn <

Mε−1∑
n=1

xn + xMε

∞∑
n=Mε

εn−Mε = K + xMε

∞∑
j=0

εj = K +
1

1− ε
< +∞.

Applying comparison test for series gives the result.

b) If xn+1

xn
> 1, then xn < xn+1, therefore the limit of the sequence cannot be zero and the series

diverges.

Corollary 24. Let

L := lim sup
xn+1

xn
≥ 0,

a) if L < 1, the series converges;

b) if L > 1, the series diverges.

Note 25. Again as in the comparison test for sequences, if L = 1, then the test is inconclusive.
For example, the generalized harmonic series

∑ 1
np is such that L = 1 for any value of p (while we

know that only for p > 1 the series converges).
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Exponential series: let x ∈ R, define

∞∑
n=0

xn

n!
= 1 + x+

x2

2
+
x3

3!
+
x4

4!
+ . . .

We want to analyze the behaviour of the series depending on x ∈ R:

• for x = 0, the series is trivial:
∑∞

n=0
0n

n! ≡ 0

• for x 6= 0, we have two cases: either x > 0 and the series has constant sign, or x < 0 and
the series does not have constant sign. We analyze both cases together by just inspecting the
absolute convergence.

We consider the series of absolute values
∑∞

n=1
|x|n
n! and apply the Ratio Test:

lim sup

|x|n+1

(n+1)!

|x|n
n!

= lim sup
|x|
n+ 1

= 0 < 1 ∀ x ∈ R\{0}.

The series is absolutely convergent (and therefore also simply convergent) for any value of
x ∈ R.

Remark 26. It is possible to prove (and we will see it later in the course) that this series is called
“exponential series” because it defines the exponential function

ex =

∞∑
n=0

xn

n!
x ∈ R,

where e is the Nepero number.

Proposition 27 (Root Test). Let {xn} be a positive sequence (xn ≥ 0 for all n ∈ N) and let

λ := lim sup
n→+∞

n
√
xn ≥ 0,

then

a) if λ < 1, the series
∑∞

n=1 xn converges;

b) if λ > 1, the series diverges.

Proof. a) if λ < 1, then there exists ε > 0 such that λ < ε < 1 and for such ε there exists Mε ∈ N
such that ∀ n ≥Mε

n
√
xn < ε, i.e. xn < εn.

Summing over all the elements of the sequence, the series
∑∞

n=1 xn becomes bounded from above
by a constant plus a (convergent) geometric series, therefore it is convergent as well:

∞∑
n=1

xn =

Mε−1∑
n=1

xn +

∞∑
n=Mε

xn < K1 +

∞∑
n=Mε

εn = K1 +

∞∑
n=0

εn −
Mε−1∑
n=0

εn = K1 +K2 +
1

1− ε
< +∞.
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b) if λ > 1, then there exists a subsequence { nk√xnk} such that nk
√
xnk → λ > 1, therefore xnk

does not converges to zero. The series diverges.

Corollary 28. Let
λ̃ := lim

n→+∞
n
√
xn ≥ 0,

a) if λ̃ < 1, the series converges;

b) if λ̃ > 1, the series diverges.

Note 29. Also in this case if λ̃ = 1, then the test is inconclusive.

Examples. Apply the root test to the following series to check their behaviour:

1)
∑∞

n=1

(
n

2n+1

)n
:

lim
n→+∞

n

√(
n

2n+ 1

)n
= lim

n→+∞

n

2n+ 1
=

1

2
< 1

therefore the series converges.

2)
∑∞

n=1
(n+1)n

e3n
:

lim
n→+∞

n

√
(n+ 1)n

e3n
= lim

n→+∞

n+ 1

e3
= +∞

therefore the series diverges.

7 Alternating sign series

Definition 30. An alternating sign series is a series of the form

∞∑
n=1

(−1)n−1xn = x1 − x2 + x3 − x4 + . . .

where the term xn is positive (xn > 0 for all n ∈ N).

Proposition 31 (Leibniz criterion). Suppose that the sequence {xn} is such that it is

1. positive: xn > 0

2. decreasing: xn ≥ xn+1

3. infinitesimal: limn→+∞ xn = 0

Then, the alternating sign series
∑∞

n=1(−1)n−1xn converges and the following estimate for the sum
S holds: for all n ∈ N

|sn − S| ≤ xn+1.
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Proof. Consider the odd partial sums:

s2n+1 = s2n−1 + (−1)2n−1x2n + (−1)2nx2n+1 = s2n−1 − (x2n − x2n+1) ≤ s2n−1

since {xn} is decreasing. Therefore, the subsequence of odd partial sums is monotone decreasing.
On the other hand, consider the even partial sums:

s2n = s2n−2 + (−1)2n−2x2n−1 + (−1)2n−1x2n = s2n−2 + (x2n−1 − x2n) ≥ s2n−2

Therefore, the subsequence of even partial sums is monotone increasing.
Furthermore,

s2n+1 = s2n + (−1)2nx2n+1 = s2n + x2n+1 ≥ s2n,

meaning that the sequence of partial sums is ordered in this way

s2 ≤ s4 ≤ . . . ≤ s2n ≤ s2n+1 ≤ s2n−1 ≤ . . . ≤ s3 ≤ s1.

Therefore, both subsequences are monotone and bounded, so they are convergent. To prove
that they converge to the same limit, we notice that

s2n+1 − s2n = (−1)2nx2n+1 = x2n+1 → 0

because the sequence {xn} is infinitesimal. Therefore, they have the same limit: s2n+1 → S and
s2n → S.

To prove the final estimate, we calculate

0 ≤ S − sn ≤ s2n+1 − s2n = x2n+1

0 ≤ s2n+1 − S ≤ s2n+1 − s2n+2 = x2n+2.

Example. The generalized harmonic series
∑∞

n=1
(−1)n
np converges absolutely for p > 1 and it

converges simply (but not absolutely) for 0 < p ≤ 1, thanks to Leibniz criterion.

8 Sum and product of series; rearrangements

Proposition 32 (Linearity). Let α ∈ R and
∑
xn,

∑
yn convergent series.

1. The series
∑∞

n=1 αxn converges and
∑∞

n=1 αxn = α
∑∞

n=1 xn.

2. The series
∑∞

n=1(xn + yn) converges and
∑∞

n=1(xn + yn) =
∑∞

n=1 xn +
∑∞

n=1 yn.

Definition 33. Given two series
∑∞

n=0 an and
∑∞

n=0 bn, their Cauchy product is a new series

∞∑
n=0

cn with general term cn = a0bn + a1bn−1 + . . .+ anb0 =
n∑
j=0

ajbn−j

12



Proposition 34 (Merten’s Theorem). If
∑∞

n=0 an converges absolutely and its sum is
∑∞

n=0 an =
A and if

∑∞
n=0 bn converges (even simply) and

∑∞
n=0 bn = B, then their Cauchy product converges

as well and
∞∑
n=0

cn = AB.

Definition 35. Given a series
∑
an, a rearrangement is a new series

∑
bn obtained from the

previous one by changing the summation order.
More formally, let σ : N → N be a bijection, then given

∑∞
n=1 an a rearrangement is the new

series
∞∑
n=1

aσ(n).

The main questions that arise for these new series are: is the new series still convergent, if the
original one is? What is its sum?

We report here some fundamental result without giving proofs.

Definition 36. A series
∑
an is unconditionally convergent if for anny rearrangement σ the

new series
∑
aσ(n) is still convergent and its sum is the same as the original series

∑
an = S =∑

aσ(n).

Theorem 37 (Dirichlet). A series
∑
an is unconditionally convergent if and only if it is absolutely

convergent.

Theorem 38 (Riemann). If a series
∑
an is simply convergent (but not absolutely), for any

α, β ∈ R ∪ {±∞} there exists a rearrangement σ : N→ N such that the new series
∑
aσ(n) has the

following behaviour

α = lim inf
∑

aσ(n) and β = lim sup
∑

aσ(n)

Corollary 39. If a series
∑
an is simply convergent (but not absolutely), for any α ∈ R ∪ {±∞}

there exists a rearrangement σ : N → N such that the new series
∑
aσ(n) is convergent and has

sum equal to α: ∑
aσ(n) = α.

To see an example of this corollary, we refer to Example 2.6.4 from the textbook.
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