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1 Introduction

In 1927 Balthazar Van der Pol, a Dutch electrical engineer, introduced an equation in order to
describe oscillations in a vacuum tube electrical circuit. The (autonomous) equation reads

y′′ + µ(y2 − 1)y′ + y = 0 µ > 0 (1)

where y(t) describes the current in a certain type of vacuum tube called “triode”. The corresponding
non-autonomous equation is

y′′ + µ(y2 − 1)y′ + y = a sin(ωt) µ > 0, a, ω ∈ R.

In these notes we will mostly focused on the autonomous equation (2).
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Figure 1: Solutions of the VdP equation (2) for µ = 0, 1, 2.

1.1 Modelling and history - Where does the equation come from?

At the beginning of the twentieth century, vacuum tubes were used to control the flow of electricity
in the circuitry of transmitters and receivers. Contemporary with Lorenz, Thompson, and Apple-
ton, Van der Pol experimented with oscillations in a vacuum tube triode circuit and concluded that
all initial conditions converged to the same periodic orbit of finite amplitude. Since this behavior
is different from the behavior of solutions of linear equations, van der Pol proposed a nonlinear
differential equation

y′′ + µ(y2 − 1)y′ + y = 0 µ > 0 (2)

commonly referred to as the (unforced) van der Pol equation, as a model for the behavior observed
in the experiment.

We will briefly show here how to derive the equation (2). Consider an electrical RLC circuit as
in Figure ??: it consists of an inductance L, a capacitor C, a resistor R and we assume that the
voltage source is a battery (E(t) = E constant). When the battery switch is closed, a current I(t)
begins to flow in the circuit according to Kirchhoff’s Voltage Law:

LI ′ +RI +
1

C
Q = E

where Q is the charge of the capacitor and Q′ = I. If we differentiate both sides of the equation,
we find LI ′′ +RI ′ + 1

C I = 0, which is a second-order linear ODE with constant coefficients and it
represents a damped harmonic oscillator.

The circuit that was considered by Van der Pol, however, displayed an active element (an array
of vacuum tubes – semiconductor) instead of a passive resistor. This way, the semiconductor acts
as if it is pumping energy in the system, when the current is low, and damping the energy of
the system, when the current is too high (unlike a resistor which simply dissipates energy). The
interplay between energy injection and energy absorption results in a periodic oscillation in voltages
and currents. The action of the semiconductor is modelled by the function I2 − α, where α is the
threshold level of current, and the equation for the current becomes

LI ′ + (I2 − α)I +
1

C
Q = E
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where we assumed that there is no external source of voltage, for simplicity. By taking the derivative
on both sides of the equation we obtain indeed the VdP equation:

LI ′′ + 3I ′
(
I2 − α

3

)
+

1

C
I = 0

(the constants can be rescaled to have the standard form of the VdP equation (2)).
Since its introduction, the Van der Pol equation has been used as a basic model for oscillatory

processes in physics, electronics, biology, neurology, sociology and economics. The model was soon
generalized to a forced system

y′′ + µ(y2 − 1)y′ + y = Fω(t),

where Fω(t) is an external force, possibly depending on some parameter ω ∈ R. In particular, much
attention has been devoted to the study of the VdP equation under an external periodic (sinusoidal)
force Fω(t) = a sin(ωt), with a, ω ∈ R. Van der Pol himself built a number of electronic circuit
models of the human heart to study the range of stability of heart dynamics. His investigations
with adding an external driving signal were analogous to the situation in which a real heart is
driven by a pacemaker. He was interested in finding out how to stabilize a heart’s irregular beating
(arrhythmias).

2 Qualitative analysis

The Van der Pol equation

y′′ + µ(y2 − 1)y′ + y = 0 µ > 0 (3)

is a special case of a more general class of second-order non-linear autonomous equations called
Liénard equations:

y′′ +W (y)y′ + Z(y) = 0

These type of equations can be interpreted as a model for a spring-mass system where the damping
force W (y) depends on the position (for example, the mass might be moving through a viscous
medium of varying density), and the spring constant Z(y) (or restoring force) depends on how
much the spring is stretched: in particular,

y′′ + µ(y2 − 1)︸ ︷︷ ︸
damping

y′ + y︸︷︷︸
restoring

= 0.

and the parameter µ in front of the nonlinear term indicates the strength of the damping.
By directly inspecting the equation, we can already draw some general conclusions about the

behaviour of the solutions. If the solution y � 1, both the restoring and damping forces are large,
so that |y(t)| should decrease with time. The system behaves like a strongly damped oscillator and
it disperses energy.

If the solution is small |y| � 1, the damping force becomes negative, which should make |y(t)|
tend to increase with time. The energy of the system grows.
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This is already a hint that there could be a limit cycle in the phase space. We will see that
indeed this dynamical system has a unique stable limit cycle or, equivalently, the equation (3) has
a unique periodic solution and all nearby solutions tend towards this periodic solution as t→ +∞.
Clearly, the “shape” of the limit cycle will strongly depend on the value of µ. Before proving it,
let’s have a closer look at the equation.

We can rewrite the VdP equation as a first order system with two variables (y, v) (y being the
position and v being the velocity): {

y′ = v

v′ = µ(1− y2)v − y
(4)

2.1 Equilibrium points

The system admits only one equilibrium point{
y′ = v = 0

v′ = µ(1− y2)v − y = 0
⇔ y = 0, v = 0.

If we want to analyze the local behaviour, we’ll need as usual to linearize the system around (0, 0):
the Jacobian of the system at the point (0, 0) is

J =

[
0 1
−1 µ

]
with Tr J = µ and det J = 1. Its eigenvalues are

λ1,2 =
µ±

√
µ2 − 4

2

Therefore, depending on the value of µ we may have

(0, 0) =


center if µ = 0

unstable spiral point if 0 < µ < 2

unstable degenerate node if µ = 2

unstable node if µ > 2.

2.2 Force-lines and symmetries

We want to identify some reference force-lines to start drawing the phase space. We study force-lines
that are purely vertical or horizontal in the (y, v) phase plane. In the first case we set

y′ = 0 ⇔ v = 0

meaning that the force-lines become vertical along the y-axis. In the second case, we set

v′ = 0 ⇔ v =
y

µ(1− y2)

4



-6 -4 -2 2 4 6

-1.5

-1.0

-0.5

0.5

1.0

1.5

Figure 2: The lines where the force-lines becomes horizontal.

meaning that the force-lines become horizontal along the (3-fold) curve v = y
µ(1−y2) as in Figure 2.

It turns out that the system (4) has an additional symmetry, i.e. if the system doesn’t change
under some given transformation: consider the mapping

(y, v) 7→ (−y,−v)

Then, the system (4) becomes{
−y′ = −v
−v′ = µ

(
1− (−y)2

)
(−v)− (−y) = −µ

(
1− (−y)2

)
v + y

which is exactly the same as (4). This implies that the phase diagram will be symmetric with
respect to the origin (0, 0).

Remark 1. You can also check that by changing the sign of y or v only ((y, v) 7→ (−y, v), or
(y, v) 7→ (y,−v)), the system does change! Therefore these transformations (which represent a
reflection with respect to the y- or v-axis) are not symmetries of the system.

With all the gathered information, we can sketch the orbits on the phase plane: see Figure 3.

3 The case µ = 0 ∼ Harmonic Oscillator

For µ = 0 the equation becomes the classic equation for a harmonic oscillator:

y′′ + y = 0.

We all know this system very well. Its orbits in the phase-plane are the usual circles around the
origin.
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Figure 3: The vector field on the phase-pane.

4 The case 0 < µ � 1 ∼ Small nonlinearity and the quest for the
limit cycle.

4.1 Preliminary discussions

If the nonlinearity is small (µ� 1), we can argue that the phase space will be a small distortion of
the phase space of the harmonic oscillator. In particular, we may still expect a circular behaviour
of the orbits. It is then natural to switch to polar coordinates:{

y = r cos θ

v = r sin θ
⇔

{
y2 + v2 = r2

v
y = tan θ

By differentiating

rr′ = yy′ + vv′

θ′

cos2 θ
=
v′y − vy′

y2

and substituting (4)

rr′ = ��yv −��vy + µ(1− y2)v2

θ′ =
µ(1− y2)vy − y2 − v2

r2
,
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we obtain an equivalent system in the new variables (r, θ):{
r′ = 0 + µr sin2 θ(1− r2 cos2 θ)

θ′ = −1 + µ sin θ cos θ(1− r2 cos2 θ)

If µ � 1 (say, µ ≈ 0), the leading-order terms on the right hand side of the system give the
linearized system r′ = 0 and θ′ = −1, meaning that the radius remains constant r(t) = r0 and the
angle evolves linearly θ(t) = t. We now continue by considering also the first sub-leading order
terms in the systems, i.e. the terms of order O(µ), and we consider them as a bounded perturbation
of the leading-order system.

We can already make some preliminary observations: if r is small enough, then r′ > 0 and the
orbit is growing, while if r is big enough, then r′ < 0 and the orbit is decreasing. Also, the angle θ
evolves faster than r, since already in leading-order approximation it was evolving linearly (while
r remained constant).

4.2 The method of averaging

In the case µ� 1, we make an ansatz for the solution:{
y(t) = r(t) cos (t+ ω(t))

y′(t) = −r(t) sin (t+ ω(t))
(5)

the motivation for this ansatz is that when µ is zero equation (2) has its solution of the form (5)
with r and ω constants. For small values of µ we expect the same form of the solution to be
approximately valid, but now r and ω will be slowly varying functions of t.

From (5), in a similar way as the above calculations, we obtain the system{
r′ = −µr

(
r2 cos2(t+ ω)− 1

)
sin2(t+ ω)

ω′ = −µ
(
r2 cos2(t+ ω)− 1

)
sin(t+ ω) cos(t+ ω)

(6)

The “method of averaging” corresponds to assuming that since the variables (r, ω) are slowly
varying in time, they are acting on average as constants. In formulæ, we are replacing the right
hand side of (6) with their average over one cycle of oscillation (note that the vector-field is 2π
periodic): 

r′ =
1

2π

∫ 2π

0
−µr

(
r2 cos2(t+ ω)− 1

)
sin2(t+ ω)dω

ω′ =
1

2π

∫ 2π

0
−µ
(
r2 cos2(t+ ω)− 1

)
sin(t+ ω) cos(t+ ω)dω

It remains to calculate the integrals. The equation for ω is equal to zero because we’re integrating
periodic functions over their period (and r is kept constant):

−µ
2π

∫ 2π

0
r2 cos3(t+ ω) sin(t+ ω)− sin(t+ ω) cos(t+ ω)dω

=
−µ
2π

[
−r2 cos4(t+ ω)

4
+

cos2(t+ ω)

2

]2π
0

= 0
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Figure 4: Different trajectories of the system with µ = 0.1.

therefore, ω′ = 0 impying ω(t) = ω0. For the equation for r we use the trigonometric identities

cos2(θ) =
1 + cos(2θ)

2
sin2(θ) =

1− cos(2θ)

2

to obtain

r′ =
−µr
2π

∫ 2π

0
r2 cos2(t+ ω) sin2(t+ ω)− sin2(t+ ω)dω

=
−µr
2π

∫ 2π

0
r2

1 + cos(2(t+ ω))

2

1− cos(2(t+ ω))

2
− 1 + cos(2(t+ ω))

2
dω

=
−µr3

2π

∫ 2π

0

1− cos2(2(t+ ω))

4
dω +

µr

2
= −µr

3

4
+

µr3

4 · 2π

∫ 2π

0
cos2(2(t+ ω))dω +

µr

2

= −µr
3

4
+

µr3

4 · 2π

∫ 2π

0

1 + cos(4(t+ ω))

2
dω +

µr

2
= −µr

3

4
+
µr3

8π
+
µr

2

= −µr
3

8
+
µr

2
=
µr

8
(4− r2)

i.e. a separable equation for r. By partial fraction decomposition we can recover the solution.
First of all, notice that if r0 = 0, 2, then r(t) = 0 and r(t) = 2 are constant solutions. In

particular, r(t) = 0 is the equilibrium point of the system (see Section 2.1) and since µ � 1, it is
an unstable spiral point in the (y, v)-phase plane. The solution r(t) = 2 has a negative eigenvalue
(linearize the (r, ω)-system near the point (ω0, 2) and check its Jacobian...), therefore it is a stable
node which corresponds to a stable (almost) 2π-periodic orbit of radius 2.

Assuming now r(0) = r0 < 2 we get

8
dr

r(4− r2)
= µdt

and by partial fraction decomposition

1

r(4− r2)
=
−1

4

r
+

1
8

2− r
+

1
8

2 + r
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Figure 5: Plot of the solution v (blue) and its derivative v (red) with µ = 0.1 and initial condition
(y0, v0) = (0.5, 0).

Integrating we get∫
8

dr

r(4− r2)
= 8

[
−1

4
ln r − 1

8
ln |2− r|+ 1

8
ln |2 + r|

]
= ln

∣∣∣∣ r + 2

r2(r − 2)

∣∣∣∣
In conclusion

r + 2

r2(r − 2)
= C0e

µt

where C0 =
r20(r0−2)
r0+2 . The above implicit relation can actually be rewritten explicitly

r(t) =
2e

µ
2
t√

eµt − 1 + 4
r20

It is easy to see that as t→ +∞, r(t)→ 2 and the limit value is the value of the limit cycle.

5 The case µ� 1 ∼ Relaxation oscillations

5.1 Qualitative analysis.

In the case when µ is very big, we can analyze the solutions of the VdP equation in the following
way.We start by rewriting the VdP equation 2 as Rewrite the VdP equation as

µ
d

dt

[
y′

µ
+

1

3
y3 − y

]
+ y = 0
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Figure 6: Plot of the solution v (blue) and its derivative v (red) with µ = 5 and initial condition
(y0, v0) = (0.5, 0).

equivalently, 
y′ = µ

[
w −

(
1

3
y3 − y

)]
w′ = − y

µ

Since µ� 1 is very large, we have that |w′| ≤ |y′| and actually w′ ≈ 0, meaning that the force
lines are horizontal almost everywhere, except in a neighbourhood of the solution y′ = 0 (a cubic

curve Γ given by w = y3

3 − y), where the two quantities y′ and w′ become comparable.
When solutions arrive (horizontally) in a neighbourhood of such cubic Γ in the (y, w)-phase

space, they turn sharply and follow Γ until they reach a critical point of Γ:

w′ =

(
y3

3
− y
)′

= 0 ⇔ y = ±1 (and w = ∓2

3
);

when the trajectory is close to one critical points, it leaves Γ and continues again horizontally to
the other critical point.

5.2 Existence of the limit cycle

The Poincaré–Bendixson Theorem for the existence of limit cycles cannot be applied in this context,
since for µ� 1 the force lines are mostly horizontal and we cannot identify a good trapping region.
However, the existence of a (stable) limit cycle of the VdP equation for any µ > 0 can be proved
using a powerful theorem due to Levinson and Smith, which we will not prove.

Theorem 2 (Levinson–Smith Theorem). Consider the autonomous 2nd order differential equa-
tion

y′′ + f(y)y′ + g(y) = 0
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Figure 7: Different trajectories of the system with µ = 3.

and suppose that the following conditions are satisfied:

(a) f(y) is even and continuous,

(b) g(y) is odd, g(y) > 0 if y > 0, and g(y) is continuous for all y,

(c) G(y)→∞ as y →∞, where G(y) =
∫ y
0 g(x)dx

(d) for some k > 0, we have that F (y) < 0 for y ∈ (0, k), F (y) > 0 and increasing for y ∈ (k,+∞)
and F (y)→∞ as y →∞, where F (y) =

∫ y
0 f(x)dx.

Then, the corresponding 1st order system has

(i) a unique critical point at the origin;

(ii) a unique non-zero closed trajectory Σ, which is a stable limit cycle around the origin;

(iii) all other non-zero trajectories are spiralling towards Σ as t↗ +∞.

It is easy to see that the VdP equation satisfies all the conditions (a)–(d) above: f(y) =
µ(y2 − 1) is a quadratic polynomial, therefore even and continuous on R and its antiderivative

F (y) = µ
∫ y
0 s

2−1 ds = µ
(
y3

3 − y
)

is negative for y ∈ (0,
√

3), positive and increasing on (
√

3,+∞)

and F (y)→ +∞ as y → +∞; g(y) = y the identity function is an odd function and its antiderivative

G(y) =
∫ y
0 s ds = y2

2 → +∞ as y → ±∞. Therefore, the VdP equation does admit the existence of
a unique stable limit cycle.

6 Numerical considerations

Numerically solving the VdP equation is an example of a stiff problem: the solution being sought
is varying slowly, but there are nearby solutions that vary rapidly, so the numerical method must
take small steps to obtain satisfactory results.
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Stiffness is an efficiency issue. If we weren’t concerned with how much time a computation
takes, we wouldn’t be concerned about stiffness. Non-stiff methods can solve stiff problems; they
just take a long time to do it.

To cure the stiff issue, since you can’t change the differential equation or the initial conditions,
you’ll need to change the numerical method. Methods intended to solve stiff problems efficiently
do more work per step, but can take much bigger steps.

This is why, for example, in order to numerically integrate the VdP equation in Matlab, the
standard ode45 doesn’t work very well and it is instead used ode23s or ode15s.
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