1. Let $0 < \alpha < 1$. Prove that $\sqrt{\alpha} > \alpha$.

2. Prove that there are no positive integer solutions to the equation $x^2 - y^2 = 10$.

3. Prove there are infinitely many primes.

PART 1: Lemma. Any integer n > 1 has a prime factorization. (such a factorization is actually unique, but we won't prove it here)

PART 2: **Theorem.** There exists infinitely many primes.

4. Show that if $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$, then $a + b \in \mathbb{Q}$.

5. If $n \in \mathbb{N}$ and $2^n - 1$ is prime, then n is prime.

6. If $n \in \mathbb{Z}$, then $5n^2 + 3n + 7$ is odd.

7. Prove that for $x, y \in \mathbb{R}$, $(x + y)^2 = x^2 + y^2$ if and only if x = 0 or y = 0.

8. A positive integer n is divisible by 3 if and only if the sum of the digits of n is divisible by 3.

9. What implications would we have to prove to prove the following theorem from linear algebra?

Theorem. Suppose A is an $n \times n$ matrix. The following statements are equivalent:

- (i) The matrix A is invertible.
- (ii) The equation $A\vec{x} = \vec{b}$ has unique solution for every $\vec{b} \in \mathbb{R}^n$.
- (iii) The equation $A\vec{x} = \vec{0}$ has only the trivial solution.
- (iv) The reduced row echelon form of A is Id.
- (v) The matrix A does not have 0 as an eigenvalue.

- 10. Prove that for any $x, y \in \mathbb{R} \setminus \{0\}$, the following statements are equivalent:
 - (i) |x+y| = |x| + |y|
 - (ii) xy = |xy|
 - (iii) $(x+y)^2 = x^2 + y^2 + 2|xy|$
 - (iv) x and y have the same sign