1. Let $0<\alpha<1$. Prove that $\sqrt{\alpha}>\alpha$.
2. Prove that there are no positive integer solutions to the equation $x^{2}-y^{2}=10$.
3. Prove there are infinitely many primes.

Part 1:
Lemma. Any integer $n>1$ has a prime factorization.
(such a factorization is actually unique, but we won't prove it here)

Part 2:
Theorem. There exists infinitely many primes.
4. Show that if $a \in \mathbb{Q}$ and $b \in \mathbb{Q}$, then $a+b \in \mathbb{Q}$.
5. If $n \in \mathbb{N}$ and $2^{n}-1$ is prime, then n is prime.
6. If $n \in \mathbb{Z}$, then $5 n^{2}+3 n+7$ is odd.
7. Prove that for $x, y \in \mathbb{R},(x+y)^{2}=x^{2}+y^{2}$ if and only if $x=0$ or $y=0$.
8. A positive integer n is divisible by 3 if and only if the sum of the digits of n is divisible by 3 .
9. What implications would we have to prove to prove the following theorem from linear algebra?

Theorem. Suppose A is an $n \times n$ matrix. The following statements are equivalent:
(i) The matrix A is invertible.
(ii) The equation $A \vec{x}=\vec{b}$ has unique solution for every $\vec{b} \in \mathbb{R}^{n}$.
(iii) The equation $A \vec{x}=\overrightarrow{0}$ has only the trivial solution.
(iv) The reduced row echelon form of A is Id.
(v) The matrix A does not have 0 as an eigenvalue.

10. Prove that for any $x, y \in \mathbb{R} \backslash\{0\}$, the following statements are equivalent:
(i) $|x+y|=|x|+|y|$
(ii) $x y=|x y|$
(iii) $(x+y)^{2}=x^{2}+y^{2}+2|x y|$
(iv) x and y have the same sign

