1. Describe the following relations by listing the elements of the relation:
(a) Let $A=\{1,2,3,4,5\}$ and $R_{<}$is the relation "strictly less than".
(b) Let $A=\{1,2,3,4,5\}$ and R_{\mid}is the relation "divides".
2. Explain with details if
(a) $R_{<}$is reflexive symmetric antisymmetric transitive
(b) R_{\mid}is reflexive symmetric antisymmetric transitive
(c) Consider the relation $R=\left\{(x, y) \in \mathbb{R}^{2} \mid x^{2}+y^{2}=1\right\}$. R is reflexive symmetric antisymmetric transitive
(d) Consider the relation $R_{\leq}=\left\{(x, y) \in \mathbb{R}^{2} \mid x \leq y\right\}$.
R_{\leq}is reflexive symmetric antisymmetric transitive
(e) Let $A=\{1,2,3,4\}$, and $R=\{(1,1),(2,2),(2,4),(3,2),(3,3),(4,3),(4,4)\}$. Draw a graph with whose vertices are the elements of A. Draw an arrow from a to b if $a R b$.
Is this relation reflexive? Symmetric? Transitive?
(f) Let $A=\{3,5,6,9,30\}$ rand let R be the relation "be multiple of". Draw the arrow diagram of the relation.
(g) Let $A=\mathbb{Z}_{+}$and let R be the relation $x R y$ if $x+y$ is odd. Verify if the relation R is an equivalence relation.
(h) Let $A=\mathbb{Z}_{+}$and let R be the relation "have the same unit digit". Verify that it is an equivalence relation and study its equivalence classes:
i. how many equivalence classes are there?
ii. how many elements are there in each equivalence class?
(i) Prove the following:

Proposition Let R be an equivalence relation on a set A. Suppose $a, b \in A$. Then $[a]=[b]$ if and only if $a R b$.

Modular Arithmetic

Definition Given a natural number $n \neq 1$, we define a relation \equiv on \mathbb{Z}, called congruence $\bmod n$, by $a \equiv b$ if $n \mid(a-b)$.

Note: $n \mid a-b$ is equivalent to the following statements:
(a) $n \mid a-b$.
(b) $a=n h+b$ for some $h \in \mathbb{Z}$.
(c) $b=n k+a$ for some $k \in \mathbb{Z}$.

Therefore, two integers a and b are congruent modulo n if they give the same remainder upon division by n.

Examples

$$
\begin{aligned}
& 8 \equiv 5 \bmod 3 \\
& 11 \equiv 5 \bmod 3 \\
& 2 \equiv 5 \bmod 3 \\
& 14 \equiv 5 \bmod 3 \\
& -1 \equiv 5 \bmod 3 \\
& 28 \equiv 4 \bmod 2 \\
& 5678 \equiv 0 \quad \bmod 2 \\
& 17 \equiv 1 \bmod 2
\end{aligned}
$$

(j) Let $n \in \mathbb{N}$. Prove that the relation $\equiv \bmod n$ on the set \mathbb{Z} is an equivalence relation.
(k) Let $A=\mathbb{Z}$, and $R=$ congruence $\bmod 7$. Describe the equivalence classes.
(l) Demonstrate that $7 \equiv 1 \bmod 6$ and $57 \equiv-13 \bmod 7$.
(m) Express " x is even" and " x is odd" in terms of congruences.
(n) What does $x \equiv 0 \bmod n$ means in terms of divisibility?

Calculations with Modular Arithmetic

One can work with modular equations in many of the ways as with ordinary equations.

Proposition Let $n \in \mathbb{Z}$.
(a) If $a=b \bmod n$ and $c=d \bmod n$, then $a+c=b+d \bmod n$.
(b) If $a=b \bmod n$ and $c=d \bmod n$, then $a c=b d \bmod n$.

Examples

$$
\begin{aligned}
& 12+9 \equiv 21 \equiv 1 \bmod 5 \text {, but also } 12+9 \equiv 2+(-1) \equiv 1 \bmod 5 \\
& 12-9 \equiv 3 \bmod 5 \text {, but also } 12-9 \equiv 2-(-1) \equiv 3 \bmod 5 \\
& 12+3 \equiv 15 \equiv 0 \bmod 5 \text {, but also } 12+3 \equiv 2+3 \equiv 5 \equiv 0 \bmod 5 \\
& 15-23 \equiv-8 \equiv 2 \bmod 5 \text {, but also } 15-23 \equiv 0-(-2) \equiv 2 \bmod 5 \\
& 35 \cdot 7 \equiv 245 \equiv 0 \quad \bmod 5 \text {, but also } 35 \cdot 7 \equiv 0 \cdot 2 \equiv 0 \bmod 5 \\
& -47 \cdot(5+1) \equiv-282 \equiv 3 \quad \bmod 5 \text {, but also }-47 \cdot(5+1) \equiv 2 \cdot 1 \equiv 2 \bmod 5 \\
& 37^{3} \equiv 50653 \equiv 3 \bmod 5, \text { but also } 37^{3} \equiv 2^{3} \equiv 8 \equiv 3 \bmod 5
\end{aligned}
$$

(o) Prove the proposition above.
(p) Prove that for all integers $n \in \mathbb{Z}, n^{2} \equiv 0 \bmod 4$ or $n^{2} \equiv 1 \bmod 4$.
(q) Solve $3 x+4=2 x+8 \bmod 9$.

