- 1. Describe the following relations by listing the elements of the relation:
 - (a) Let $A = \{1, 2, 3, 4, 5\}$ and $R_{<}$ is the relation "strictly less than".

(b) Let $A = \{1, 2, 3, 4, 5\}$ and R_{\parallel} is the relation "divides".

2. Explain with details if

(a) $R_{<}$	is reflexive	symmetric	antisymmetric	transitive
		•		

(b) $R_{ }$ is reflexive s	$\operatorname{symmetric}$	antisymmetric	transitive
----------------------------	----------------------------	---------------	------------

(c) Consider the relation $R = \{(x,y) \in \mathbb{R}^2 \mid x^2 + y^2 = 1\}$. *R* is reflexive symmetric antisymmetric transitive

(d) Consider the relation $R_{\leq} = \{(x,y) \in \mathbb{R}^2 \mid x \leq y\}.$ R_{\leq} is reflexive symmetric antisymmetric transitive (e) Let $A = \{1, 2, 3, 4\}$, and $R = \{(1,1), (2,2), (2,4), (3,2), (3,3), (4,3), (4,4)\}$. Draw a graph with whose vertices are the elements of A. Draw an arrow from a to b if aRb. Is this relation reflexive? Symmetric? Transitive?

(f) Let $A = \{3, 5, 6, 9, 30\}$ rand let R be the relation "be multiple of". Draw the arrow diagram of the relation.

(g) Let $A = \mathbb{Z}_+$ and let R be the relation xRy if x + y is odd. Verify if the relation R is an equivalence relation.

- (h) Let $A = \mathbb{Z}_+$ and let R be the relation "have the same unit digit". Verify that it is an equivalence relation and study its equivalence classes:
 - i. how many equivalence classes are there?
 - ii. how many elements are there in each equivalence class?

(i) Prove the following:

Proposition Let R be an equivalence relation on a set A. Suppose $a, b \in A$. Then [a] = [b] if and only if aRb.

Modular Arithmetic

Definition Given a natural number $n \neq 1$, we define a relation \equiv on \mathbb{Z} , called **congruence** mod n, by $a \equiv b$ if $n \mid (a - b)$.

Note: $n \mid a - b$ is equivalent to the following statements:

(a) $n \mid a - b$.

(b) a = nh + b for some $h \in \mathbb{Z}$.

(c) b = nk + a for some $k \in \mathbb{Z}$.

Therefore, two integers a and b are congruent modulo n if they give the same remainder upon division by n.

Examples

 $8 \equiv 5 \mod 3$ $11 \equiv 5 \mod 3$ $2 \equiv 5 \mod 3$ $14 \equiv 5 \mod 3$ $-1 \equiv 5 \mod 3$ $28 \equiv 4 \mod 2$ $5678 \equiv 0 \mod 2$ $17 \equiv 1 \mod 2$

(j) Let $n \in \mathbb{N}$. Prove that the relation $\equiv \mod n$ on the set \mathbb{Z} is an equivalence relation.

(k) Let $A = \mathbb{Z}$, and R =congruence mod 7. Describe the equivalence classes.

(l) Demonstrate that $7\equiv 1 \mod 6$ and $57\equiv -13 \mod 7$.

(m) Express "x is even" and "x is odd" in terms of congruences.

(n) What does $x \equiv 0 \mod n$ means in terms of divisibility?

Calculations with Modular Arithmetic One can work with modular equations in many of the ways as with ordinary equations. Proposition Let $n \in \mathbb{Z}$. (a) If $a = b \mod n$ and $c = d \mod n$, then $a + c = b + d \mod n$. (b) If $a = b \mod n$ and $c = d \mod n$, then $ac = bd \mod n$. Examples $12 + 9 \equiv 21 \equiv 1 \mod 5, \text{ but also } 12 + 9 \equiv 2 + (-1) \equiv 1 \mod 5$ $12 - 9 \equiv 3 \mod 5, \text{ but also } 12 - 9 \equiv 2 - (-1) \equiv 3 \mod 5$ $12 + 3 \equiv 15 \equiv 0 \mod 5, \text{ but also } 12 - 9 \equiv 2 - (-1) \equiv 3 \mod 5$ $15 - 23 \equiv -8 \equiv 2 \mod 5, \text{ but also } 15 - 23 \equiv 0 - (-2) \equiv 2 \mod 5$ $35 \cdot 7 \equiv 245 \equiv 0 \mod 5, \text{ but also } 35 \cdot 7 \equiv 0 \cdot 2 \equiv 0 \mod 5$ $-47 \cdot (5 + 1) \equiv -282 \equiv 3 \mod 5, \text{ but also } -47 \cdot (5 + 1) \equiv 2 \cdot 1 \equiv 2 \mod 5$ $37^3 \equiv 50653 \equiv 3 \mod 5, \text{ but also } 37^3 \equiv 2^3 \equiv 8 \equiv 3 \mod 5$

(o) Prove the proposition above.

(p) Prove that for all integers $n \in \mathbb{Z}, n^2 \equiv 0 \mod 4$ or $n^2 \equiv 1 \mod 4$.

(q) Solve $3x + 4 = 2x + 8 \mod 9$.