1. Given $n \in \mathbb{N}$, define a recursive function f as follows:

$$
f(0)=1 \quad f(1)=3 \quad f(n)=2 f(n-1)-f(n-2) \forall n \geq 2
$$

Prove that for all $n \geq 0, f(n)=2 n+1$.
2. The number of ways to break a $2 \times n$ candy bar into 2×1 pieces is F_{n+1}.

Generalizing Theorems

Often the role of induction is to generalize theorems from cases with few elements (say, two) to an arbitrary but finite number of elements. Below are a number of results with which we've been familiar in the case of just two elements. Now we generalize:

Example Let $n \in \mathbb{Z}^{+}$.

- Suppose $a_{1}, a_{2}, \ldots, a_{n}$ are all even integers. Then $\sum_{i=1}^{n} a_{i}$ is even.

3. Suppose A and $B_{1}, B_{2}, \ldots, B_{n}$ are all sets. Then

$$
A \cap\left(\bigcup_{i=1}^{n} B_{i}\right)=\bigcup_{i=1}^{n}\left(A \cap B_{i}\right)
$$

4. Let $n \in \mathbb{Z}^{+}$and let A be a finite set with n elements. Then $\mathcal{P}(A)$ has 2^{n} elements.
5. Prove that for all $n \in \mathbb{N}, 1^{2}+2^{2}+3^{3}+\ldots+n^{2}=\frac{n(n+1)(2 n+1)}{6}$
6. The interior angle sum of a convex n-gon is $(n-2) \pi$.
7. Give a proof of De-Moivre's theorem

$$
[\cos (x)+i \sin (x)]^{n}=\cos (n x)+i \sin (n x)
$$

8. Prove that $a^{2}-1$ is divisible by 8 for all odd integers a.
