
Math 250 More Induction (!) Section 5.2

1. Given n ∈ N, define a recursive function f as follows:

f(0) = 1 f(1) = 3 f(n) = 2f(n− 1)− f(n− 2) ∀n ≥ 2

Prove that for all n ≥ 0, f(n) = 2n+ 1.

2. The number of ways to break a 2× n candy bar into 2× 1 pieces is Fn+1.
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Generalizing Theorems
Often the role of induction is to generalize theorems from cases with few elements (say, two) to an
arbitrary but finite number of elements. Below are a number of results with which we’ve been familiar
in the case of just two elements. Now we generalize:

Example Let n ∈ Z+.

• Suppose a1,a2, . . . ,an are all even integers. Then
n∑

i=1

ai is even.

3. Suppose A and B1,B2, . . . ,Bn are all sets. Then

A ∩

(
n⋃

i=1

Bi

)
=

n⋃
i=1

(A ∩Bi)
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4. Let n ∈ Z+ and let A be a finite set with n elements. Then P(A) has 2n elements.

5. Prove that for all n ∈ N, 12 + 22 + 33 + . . .+ n2 =
n(n+ 1)(2n+ 1)

6
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6. The interior angle sum of a convex n-gon is (n− 2)π.
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7. Give a proof of De-Moivre’s theorem

[cos(x) + i sin(x)]
n
= cos(nx) + i sin(nx) .

8. Prove that a2 − 1 is divisible by 8 for all odd integers a.
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