Partitions

Example Let $A=\{1,2,3,4\}$. Consider each of the following:

- $\{\{1,2\},\{3,4\}\}$
- $\{\{1\},\{2\},\{3\},\{4\}\}$
- $\{\{1,2,3\},\{4\}\}$
- $\{\{1,2,3,4\}\}$

Example Let $A=\mathbb{Z}$ and consider the collection of subsets:

$$
\{\{\ldots,-4,-2,0,2,4, \ldots\},\{\ldots,-3,-1,1,3,5, \ldots\}\}
$$

Non-examples Let $A=\{1,2,3,4\}$. Consider each of the following:

- $\{\{1,2\},\{1,3,4\}\}$
- $\{\{1\},\{2\},\{3\},\{4\},\{\emptyset\}\}$
- $\{\{1\},\{2\},\{3\},\{4\}, \emptyset\}$

1. Which of the following collections of subsets of the plane \mathbb{R}^{2} are partitions? Explain why.
(a) $\{\{(x, y) \mid x+y=c\} \mid c \in \mathbb{R}\}$
(b) The set of all circles in \mathbb{R}^{2}
(c) The set of all circles in \mathbb{R}^{2} centered at the origin together with the set $\{(0,0)\}$
(d) $\left\{\{(x, y)\} \mid(x, y) \in \mathbb{R}^{2}\right\}$

The Pigeonhole Principle

2. Given any 11 integers, there is a pair of numbers whose difference is divisible by 10 .
3. Given 5 points in a unit square, there are two points within $\frac{\sqrt{2}}{2}$ of each other.
4. Consider the first $2 n$ integers, $1,2, \ldots, 2 n$. If more than n of these integers are selected, show that two of the selected integers must be relatively prime.
5. Suppose a soccer team scores at least one goal in 20 consecutive games. If it scores a total of 30 goals in those 20 games, prove that in some sequence of consecutive games it scores exactly 9 goals.
6. Suppose n baseball teams play in a tournament ($n \geq 2$). If each team meets every other team at most once, prove that two teams played the same number of games.
7. Is it possible to cover a chessboard with dominoes that each cover exactly two squares? What if the squares in two diagonally opposite corners are removed?

