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Definition 1. If n is a positive integer, then a partition of n is a non-increasing sequence of
positive integers p1, p2, . . . , pk whose sum is n, i.e.

0 < p1 ≤ p2 ≤ . . . ≤ pk , such that
k∑

i=1

pi = n .

A partition is usually denoted with the Greek letter

λ = (pk, pk−1, . . . , p2, p1) .

Each number pi is called a part of the partition. We let the function p(n) denote the number
of partitions of the integer n.

As an example, p(5) = 7, and here are all 7 of the partitions of the integer n = 5:

5 = 5

= 4 + 1

= 3 + 2

= 3 + 1 + 1

= 2 + 2 + 1

= 2 + 1 + 1 + 1

= 1 + 1 + 1 + 1 + 1

We take p(n) = 0 for all negative values of n and p(0) is defined to be 1.

Integer partitions were first studied by Euler. For many years one of the most intriguing and
difficult questions about them was determining the asymptotic properties of p(n) as n gets large.
This question was finally answered quite completely by three mathematicians: Hardy, Ramanujan,
and Rademacher.

An example of a problem in the theory of integer partitions that remains unsolved, despite a
good deal of effort having been expended on it, is to find a simple criterion for deciding whether
p(n) is even or odd. Though values of p(n) have been computed for n into the billions, no pattern
has been discovered to date.

A useful way to visualize an integer partition, is the Ferrers diagram: it is constructed by
stacking left-justified rows of cells, where the number of cells in each row corresponds to the size
of a part. The first row corresponds to the largest part, the second row corresponds to the second
largest part, and so on. See figure below for an example of a partition of n = 16: λ = (5, 4, 3, 3, 1).
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λ = λ∗ =

Given a partition λ, we can create the conjugate partition λ∗, by exchanging the rows and
the column (see again figure above: λ∗ = (5, 4, 4, 2, 1)). In particular, a partition is called self-
conjugate if λ∗ = λ: in this case the Ferrers diagram is symmetric (for example, the partition
λ = (5, 5, 3, 2, 2)).

As an example of the use of Ferrers diagrams in partition theory, we prove the following.

Theorem 2. The number of partitions of the integer n whose largest part is k is equal to the
number of partitions of n with k parts.

Proof. To prove this theorem we stare at a Ferrers diagram of the partition λ and notice that if we
interchange the rows and columns (i.e. we construct its conjugate λ∗) we have a 1-1 correspondence
between the two kinds of partitions.

Getting back to calculating the number of partitions of a given integer n, there is no simple
formula for p(n), but it is not hard to find a generating function for them. A generating function
is a formal power series whose coefficients encode the elements of a sequence. In our case, the
generating function of {p(n)}∞n=0 is

∞∑
n=0

p(n)xn .

Consider the following product:

(1 + x+ x2 + x3 + . . .)(1 + x2 + x4 + x6 + . . .)(1 + x3 + x6 + . . .)(1 + x4 + x8 + . . .) =

∞∏
k=1

∞∑
i=0

xik

We claim that by expanding this product, we obtain exactly the generating function we’re
looking for, namely

∑∞
n=0 p(n)x

n.
To illustrate, consider the coefficient of x3. By choosing x from the first parenthesis, x2 from

the second, and 1 from the remaining parentheses, we obtain a contribution of 1 to the coefficient
of x3. Similarly, if we choose x3 from the third parenthesis, and 1 from all others, we will obtain
another contribution of 1 to the coefficient of x3. The only three ways to obtain x3 from this infinite
product are the following:

1 · 1 · x3 · 1 . . . = {1 from 1st parenthesis (powers of x)} × { 1 from 2nd parenthesis (powers of x2) }
× { x3 from the 3rd parenthesis (powers of x3) }
× {1 from 4th parenthesis (powers of x4)} . . .

x · x2 · 1 · 1 . . . = {x from 1st parenthesis (powers of x)} × { x2 from 2nd parenthesis (powers of x2) }
× { 1 from the 3rd parenthesis (powers of x3) }
× {1 from 4th parenthesis (powers of x4)} . . .

x2 · x · 1 · 1 . . . = {x2 from 1st parenthesis (powers of x)} × { x from 2nd parenthesis (powers of x2) }
× { 1 from the 3rd parenthesis (powers of x3) }
× {1 from 4th parenthesis (powers of x4)} . . .

So how does this relate to integer partitions?
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Let the monomial chosen from the i-th parenthesis 1 + xi + x2i + x3i . . . in the formula above
represent the number of times the part i appears in the partition. In particular, if we choose the
monomial xcii from the i-th parenthesis, then the value i will appear ci times in the partition.
Each selection of monomials makes one contribution to the coefficient of xn and in general, each
contribution must be of the form

x1c1 · x2c2 · x3c3 . . . = xc1+2c2+3c3....

Thus the coefficient of xn is the number of ways of writing

n = c1 + 2c2 + 3c3 + . . .

where each ci ≥ 0. Notice that this is just another way to represent an integer partition. For
example, the partition 25 = 6 + 4 + 4 + 3 + 2 + 2 + 2 + 1 + 1 could be represented by 25 =
6(1) + 5(0) + 4(2) + 3(1) + 2(3) + 1(2) (each partition is uniquely described by the number of 1s,
number of 2s, and so on).
Thus, there is a 1− 1 correspondence between choosing monomials whose product is xn out of the
parentheses and the partitions of the integer n.

Now return to the original product

∞∏
k=1

∞∑
i=0

xik = (1 + x+ x2 + x3 + . . .)(1 + x2 + x4 + x6 + . . .)(1 + x3 + x6 + . . .)(1 + x4 + x8 + . . .) ,

and notice that each term is a geometric series! The product can be written as

1

1− x
· 1

1− x2
· · 1

1− x3
. . .

Thinking as a combinatorialist, we are not concerned about whether these series converge, since
we consider the powers of x to be merely placeholders. These previous observations lead to Euler’s
Theorem.

Theorem 3 (Euler). The generating function of the number of partitions of n is equal to

∞∑
n=0

p(n)xn =

∞∏
k=1

1

1− xk

Note that if we are interested in explicitly calculating some particular p(n), we do not need
the entire infinite product, or even any complete factor, since no partition of n can use any integer
greater than n.

Example. Find p8.
We expand

(1 + x+ x2 + x3 + x4 + x5 + x6 + x7 + x8 + . . .)(1 + x2 + x4 + x6 + x8 . . .)(1 + x3 + x6 + . . .)×
×(1 + x4 + x8 + . . .)(1 + x5 + . . .)(1 + x6 + . . .)(1 + x7 + . . .)(1 + x8 + . . .)

= 1 + x+ 2x2 + 3x3 + 5x4 + 7x5 + 11x6 + 15x7 + 22x8 + . . .

so p(8) = 22. Note that all of the coefficients prior to this are also correct, but the following
coefficients are not necessarily the corresponding partition numbers.
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Here is another way to do the computation: we define

f(x) =
8∏

k=1

1

1− xk

to make sure the coefficient will be correct. Instead of doing the explicit product above, we compute
the Taylor series at x = 0 (maybe with the help of Matlab or Mathematica), which has the same
effect.
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