Sets and subsets

1. Prove that $14 \in \{4a + 7b \mid a, b, \in \mathbb{Z}\}\$

2. Prove that $\{12a + 4b \mid a, b \in \mathbb{Z}\} = \{4c \mid c \in \mathbb{Z}\}\$

3. Prove that $A\subseteq B$ if and only if $A-B=\varnothing$.

4. Let A,B,C be sets. Prove that $(A \cap B) - C = (A - C) \cap (B - C)$.

5. Prove that $A - (A - B) = A \cap B$.

6. Prove that for all $m, n \in \mathbb{Z}$, we have $\{x \in \mathbb{Z} : mn | x\} \subseteq \{x \in \mathbb{Z} : m | x\} \cap \{x \in \mathbb{Z} : n | x\}$.

- 7. Prove or disprove each of the following:
 - (a) Let $A = \{6a + 4 \mid a \in \mathbb{Z}\}$ and $B = \{18b 2 \mid b \in \mathbb{Z}\}.$
 - i. $A \subseteq B$

ii. $B \subseteq A$

Cartesian product

8. (a) $\{1,2\} \times \{1,3,6\}$

(b) $\{a,b\} \times \{c,d\}$

(c) $[0,1] \times [0,1]$

(d) $\mathbb{R} \times (2,4)$

(e) $\{5\} \times \mathbb{R}$

9. If A and B are finite sets, then what can you say about $|A\times B|?$

10. Let A, B, C be sets. Prove that if $B \subseteq C$, then $A \times B \subseteq A \times C$.

11. Let A, B, C be sets. Prove or disprove that if $A \times B = A \times C$, then B = C.

12. Let A, B, C be sets. Prove that $(A \cup B) \times C = (A \times C) \cup (B \times C)$.

13. Let A, B, C be sets. Prove that $A \times (B - C) = (A \times B) - (A \times C)$.

Power set

- 14. (a) Write all subsets of the set $A = \{0,1,2\}$.
 - (b) Which of the following statements are true?
 - i. $\{0\} \subseteq \mathcal{P}(A)$
 - ii. $\{1,2\} \in \mathcal{P}(A)$
 - iii. $\{\{0,1\},\{1\}\} \subseteq \mathcal{P}(A)$
 - iv. $\emptyset \in \mathcal{P}(A)$
 - v. $\emptyset \subseteq \mathcal{P}(A)$
 - vi. $\{\emptyset\} \in \mathcal{P}(A)$
 - vii. $\{\emptyset\} \subseteq \mathcal{P}(A)$
 - viii. $\{1, \{1\}\} \subseteq \mathcal{P}(A)$
 - (c) Can you generalize to say how many subsets a set of n elements has?

15. Prove or disprove the following: if A and B are sets, then $\mathcal{P}(A) - \mathcal{P}(B) = \mathcal{P}(A - B)$.

16. Let A, B be sets. Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Indexed sets

17. Given the indexed sets, compute the unions and intersections:

(a)
$$A_i = [0,i)$$
 for $i = 1, ..., n$

$$\bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} A_i =$$

(b)
$$A_i = [i - 1, i]$$
 for $i = 1, ..., n$

$$\bigcup_{i=1}^{n} A_i = \bigcap_{i=1}^{n} A_i =$$

(c)
$$A_n = [0, \frac{1}{n}]$$
 for $i = 1, ..., n$

$$\bigcup_{n=1}^{\infty} A_n =$$
$$\bigcap_{n=1}^{\infty} A_n =$$

(d)
$$A_n = [0, \frac{n}{n+1}]$$
 for $i = 1, ..., n$

$$\bigcup_{n=1}^{\infty} A_n = \bigcap_{n=1}^{\infty} A_n =$$