Sets and subsets

1. Prove that $14 \in\{4 a+7 b \mid a, b, \in \mathbb{Z}\}$
2. Prove that $\{12 a+4 b \mid a, b \in \mathbb{Z}\}=\{4 c \mid c \in \mathbb{Z}\}$
3. Prove that $A \subseteq B$ if and only if $A-B=\varnothing$.
4. Let A, B, C be sets. Prove that $(A \cap B)-C=(A-C) \cap(B-C)$.
5. Prove that $A-(A-B)=A \cap B$.
6. Prove that for all $m, n \in \mathbb{Z}$, we have $\{x \in \mathbb{Z}: m n \mid x\} \subseteq\{x \in \mathbb{Z}: m \mid x\} \cap\{x \in \mathbb{Z}: n \mid x\}$.
7. Prove or disprove each of the following:
(a) Let $A=\{6 a+4 \mid a \in \mathbb{Z}\}$ and $B=\{18 b-2 \mid b \in \mathbb{Z}\}$.
i. $A \subseteq B$
ii. $B \subseteq A$

Cartesian product

8. (a) $\{1,2\} \times\{1,3,6\}$
(b) $\{a, b\} \times\{c, d\}$
(c) $[0,1] \times[0,1]$
(d) $\mathbb{R} \times(2,4)$
(e) $\{5\} \times \mathbb{R}$
9. If A and B are finite sets, then what can you say about $|A \times B|$?
10. Let A, B, C be sets. Prove that if $B \subseteq C$, then $A \times B \subseteq A \times C$.
11. Let A, B, C be sets. Prove or disprove that if $A \times B=A \times C$, then $B=C$.
12. Let A, B, C be sets. Prove that $(A \cup B) \times C=(A \times C) \cup(B \times C)$.
13. Let A, B, C be sets. Prove that $A \times(B-C)=(A \times B)-(A \times C)$.

Power set

14. (a) Write all subsets of the set $A=\{0,1,2\}$.
(b) Which of the following statements are true?
i. $\{0\} \subseteq \mathcal{P}(A)$
ii. $\{1,2\} \in \mathcal{P}(A)$
iii. $\{\{0,1\},\{1\}\} \subseteq \mathcal{P}(A)$
iv. $\emptyset \in \mathcal{P}(A)$
v. $\emptyset \subseteq \mathcal{P}(A)$
vi. $\{\emptyset\} \in \mathcal{P}(A)$
vii. $\{\emptyset\} \subseteq \mathcal{P}(A)$
viii. $\{1,\{1\}\} \subseteq \mathcal{P}(A)$
(c) Can you generalize to say how many subsets a set of n elements has?
15. Prove or disprove the following: if A and B are sets, then $\mathcal{P}(A)-\mathcal{P}(B)=\mathcal{P}(A-B)$.
16. Let A, B be sets. Prove that $\mathcal{P}(A) \cup \mathcal{P}(B) \subseteq \mathcal{P}(A \cup B)$.

Indexed sets

17. Given the indexed sets, compute the unions and intersections:
(a) $A_{i}=[0, i)$ for $i=1, \ldots, n$

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}= \\
& \bigcap_{i=1}^{n} A_{i}=
\end{aligned}
$$

(b) $A_{i}=[i-1, i]$ for $i=1, \ldots, n$

$$
\begin{aligned}
& \bigcup_{i=1}^{n} A_{i}= \\
& \bigcap_{i=1}^{n} A_{i}=
\end{aligned}
$$

(c) $A_{n}=\left[0, \frac{1}{n}\right]$ for $i=1, \ldots, n$

$$
\begin{aligned}
& \bigcup_{n=1}^{\infty} A_{n}= \\
& \bigcap_{n=1}^{\infty} A_{n}=
\end{aligned}
$$

(d) $A_{n}=\left[0, \frac{n}{n+1}\right]$ for $i=1, \ldots, n$

$$
\begin{aligned}
& \bigcup_{n=1}^{\infty} A_{n}= \\
& \bigcap_{n=1}^{\infty} A_{n}=
\end{aligned}
$$

