The closed unit ball in normed vector spaces

Manuela Girotti

MATH 3441 Real Analysis I

To complement our long journey into the theory metric spaces, we will see in these notes a necessary and sufficient condition for the closed unit ball to be a compact subset in a vector space.

Definition 1. Given a normed vector space $(X, \|\cdot\|)$, the closed unit ball is defined as

$$B(\mathbf{0}_X; 1) := \{ x \in X \mid ||x|| \le 1 \} \subset X .$$

Theorem 2. Given a normed vector space $(X, \|\cdot\|)$, the closed unit ball $\overline{B(\mathbf{0}_X; 1)}$ is a compact subset of X if and only if X is finite dimensional.

We will divide the proof in two parts, accounting for the case of finite and infinite dimensional vector spaces (on \mathbb{R}).

Proof. (part 1)

Suppose that X has finite dimension: $\dim X = k$. It is a fundamental result from Linear Algebra that there exists a linear isomorphism

$$\mathcal{T}: X \xrightarrow{\sim} \mathbb{R}^k$$
$$x = \sum_{j=1}^k \alpha_j e_j \mapsto (\alpha_1, \dots, \alpha_k)$$

(it is actually an isometric isomorphism between $(X, \|\cdot\|_1)$ and $(\mathbb{R}^k, \|\cdot\|_1)$).

Since \mathcal{T} is an isometry and $\overline{B(\mathbf{0}_X; 1)}$ is bounded in X, then $\mathcal{T}(\overline{B(\mathbf{0}_X; 1)})$ is bounded in \mathbb{R}^k . Furthermore, since \mathcal{T}^{-1} is continuous and $\overline{B(\mathbf{0}_X; 1)}$ is closed in X, $\mathcal{T}(\overline{B(\mathbf{0}_X; 1)})$ is closed in \mathbb{R}^k .

From Heine-Borel Theorem, we can therefore conclude that $\mathcal{T}(\overline{B(\mathbf{0}_X;1)}) \subseteq \mathbb{R}^k$ is compact (closed and bounded) and, using continuity of \mathcal{T}^{-1} , it follows that $\overline{B(\mathbf{0}_X;1)}$ is compact in X. \Box

Before tackling the case of infinite dimensional vector spaces, we first state (and prove) the following lemma.

Lemma 3 (Riesz's Lemma). Let $(X, \|\cdot\|)$ be a normed vector space and let $Z \subset X$ be a proper and closed linear subspace of X. Then there exists an element $x_0 \in X$ with $\|x_0\| = 1$ and such that $\|z - x_0\| \ge \frac{1}{2}$, for every $z \in Z$.

Remark 4. While here we chose the value $\frac{1}{2}$, Riesz's Lemma is valid for any value $\theta \in (0,1)$.

Proof. (*Riesz's Lemma*) Since Z is a closed, proper subset of X, there exists $\bar{x} \in X \setminus Z$ and there exists r > 0 such that $B(\bar{x}; r) \subset X \setminus Z$ (i.e. $X \setminus Z$ is open and \bar{x} is an interior point). This implies that $\|\bar{x} - z\| \ge r$ for every $z \in Z$. Let d be the infimum of $\|z - \bar{x}\|$ over all elements in Z:

$$d := \inf_{z \in Z} \|\bar{x} - z\| \ge r > 0$$

By the definition of infimum, there exists $z^* \in Z$ such that

$$\|\bar{x} - z^*\| \le 2d \; .$$

Consider now the following point in X:

$$x_0 := \frac{\bar{x} - z^*}{\|\bar{x} - z^*\|} \in X ;$$

by construction we have that $||x_0|| = 1$. Furthermore, for any $z \in Z$ we have

$$x_0 - z = \frac{\bar{x} - z^*}{\|\bar{x} - z^*\|} - z = \frac{1}{\|\bar{x} - z^*\|} \Big(\bar{x} - z^* - \|\bar{x} - z^*\|z \Big)$$
$$= \frac{1}{\|\bar{x} - z^*\|} \Big(\bar{x} - \underbrace{(z^* + \|\bar{x} - z^*\|z)}_{\in Z} \Big)$$

where we notice that, since Z is a linear subspace of X, $z^* + \|\bar{x} - z^*\|z$ is an element of Z. Finally, $\forall z \in Z$

$$||x_0 - z|| = \frac{||\bar{x} - (z^* + ||\bar{x} - z^*||z)||}{||\bar{x} - z^*||} \ge \frac{d}{||\bar{x} - z^*||} \ge \frac{1}{2} .$$

We can finally proceed with concluding the proof of Theorem ??.

Proof. (part 2) Let X be an infinite dimensional vector space. We will prove that $\overline{B}(\mathbf{0}_X; 1)$ is not sequentially compact: the idea is to construct a sequence in $\overline{B}(\mathbf{0}_X; 1)$ with no convergent subsequence.

Let $x_1 \in \overline{B(\mathbf{0}_X; 1)}$ and call $X_1 := \langle x_1 \rangle$, i.e. X_1 is the 1-dimensional subspace of the linear combinations of x_1 . Clearly, X_1 is a proper subset of X; additionally, X_1 is closed (because it has finite dimension). We can then apply Riesz's Lemma and fine a point $x_2 \in \overline{B(\mathbf{0}_X; 1)}$ such that

$$||x_2 - z|| \ge \frac{1}{2}$$
, $\forall z \in X_1$.

Consider now $X_2 := \langle x_1, x_2 \rangle$, i.e. X_2 is the 2-dimensional subspace of the linear combinations of x_1 and x_2 . Similarly as for X_1 , X_2 is a proper, closed linear subspace of X, therefore by Riesz's Lemma $\exists x_3 \in \overline{B(\mathbf{0}_X; 1)}$ such that

$$||x_3 - z|| \ge \frac{1}{2}$$
, $\forall z \in X_2$.

We proceed as above for any n = 3, 4, ...: from the previous n - 1 steps, we consider the set $X_n := \langle x_1, ..., x_n \rangle$, where $x_j \in \overline{B(\mathbf{0}_X; 1)} \forall j = 1, ..., n$ and X_n is a proper, closed linear subspace of X (dim $X_n = n$ vs dim $X = \infty$). Therefore $\exists x_{n+1} \in \overline{B(\mathbf{0}_X; 1)}$ such that

$$||x_{n+1} - z|| \ge \frac{1}{2}$$
, $\forall z \in X_n$,

and so on.

We also notice that these subspaces are nested $(X_1 \subset X_2 \subset \ldots \subset X_n \subset X_{n+1} \subset \ldots)$ and by construction

$$||x_j - x_k|| \ge \frac{1}{2}$$
, $\forall j, k \in \mathbb{N}$.

This implies that such a sequence $\{x_n\} \subset \overline{B(\mathbf{0}_X; 1)}$ is not Cauchy. Thus, any subsequence $\{x_{n_k}\}$ is also not Cauchy, therefore it is not convergent. \Box