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To complement our long journey into the theory metric spaces, we will see in these notes
a necessary and sufficient condition for the closed unit ball to be a compact subset in a vector
space.

Definition 1. Given a normed vector space (X, ‖ · ‖), the closed unit ball is defined as

B(0X ; 1) := {x ∈ X | ‖x‖ ≤ 1} ⊂ X .

Theorem 2. Given a normed vector space (X, ‖ · ‖), the closed unit ball B(0X ; 1) is a compact
subset of X if and only if X is finite dimensional.

We will divide the proof in two parts, accounting for the case of finite and infinite dimensional
vector spaces (on R).

Proof. (part 1)
Suppose that X has finite dimension: dimX = k. It is a fundamental result from Linear

Algebra that there exists a linear isomorphism

T : X
∼−→ Rk

x =
k∑

j=1

αjej 7→ (α1, . . . , αk)

(it is actually an isometric isomorphism between (X, ‖ · ‖1) and (Rk, ‖ · ‖1)).
Since T is an isometry and B(0X ; 1) is bounded in X, then T (B(0X ; 1)) is bounded in Rk.

Furthermore, since T −1 is continuous and B(0X ; 1) is closed in X, T (B(0X ; 1)) is closed in Rk.
From Heine-Borel Theorem, we can therefore conclude that T (B(0X ; 1)) ⊆ Rk is compact

(closed and bounded) and, using continuity of T −1, it follows that B(0X ; 1) is compact in X.

Before tackling the case of infinite dimensional vector spaces, we first state (and prove) the
following lemma.

Lemma 3 (Riesz’s Lemma). Let (X, ‖ · ‖) be a normed vector space and let Z ⊂ X be a
proper and closed linear subspace of X. Then there exists an element x0 ∈ X with ‖x0‖ = 1
and such that ‖z − x0‖ ≥ 1

2 , for every z ∈ Z.

Remark 4. While here we chose the value 1
2 , Riesz’s Lemma is valid for any value θ ∈ (0, 1).

Proof. (Riesz’s Lemma) Since Z is a closed, proper subset of X, there exists x̄ ∈ X \ Z and
there exists r > 0 such that B(x̄; r) ⊂ X \Z (i.e. X \Z is open and x̄ is an interior point). This
implies that ‖x̄− z‖ ≥ r for every z ∈ Z. Let d be the infimum of ‖z − x̄‖ over all elements in
Z:

d := inf
z∈Z
‖x̄− z‖ ≥ r > 0
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By the definition of infimum, there exists z∗ ∈ Z such that

‖x̄− z∗‖ ≤ 2d .

Consider now the following point in X:

x0 :=
x̄− z∗

‖x̄− z∗‖
∈ X ;

by construction we have that ‖x0‖ = 1. Furthermore, for any z ∈ Z we have

x0 − z =
x̄− z∗

‖x̄− z∗‖
− z =

1

‖x̄− z∗‖

(
x̄− z∗ − ‖x̄− z∗‖z

)
=

1

‖x̄− z∗‖

(
x̄− (z∗ + ‖x̄− z∗‖z)︸ ︷︷ ︸

∈Z

)
where we notice that, since Z is a linear subspace of X, z∗ + ‖x̄− z∗‖z is an element of Z.

Finally, ∀ z ∈ Z

‖x0 − z‖ =
‖x̄− (z∗ + ‖x̄− z∗‖z)‖

‖x̄− z∗‖
≥ d

‖x̄− z∗‖
≥ 1

2
.

We can finally proceed with concluding the proof of Theorem ??.

Proof. (part 2) Let X be an infinite dimensional vector space. We will prove that B(0X ; 1) is
not sequentially compact: the idea is to construct a sequence in B(0X ; 1) with no convergent
subsequence.

Let x1 ∈ B(0X ; 1) and call X1 := 〈x1〉, i.e. X1 is the 1-dimensional subspace of the linear
combinations of x1. Clearly, X1 is a proper subset of X; additionally, X1 is closed (because it
has finite dimension). We can then apply Riesz’s Lemma and fine a point x2 ∈ B(0X ; 1) such
that

‖x2 − z‖ ≥
1

2
, ∀ z ∈ X1 .

Consider now X2 := 〈x1, x2〉, i.e. X2 is the 2-dimensional subspace of the linear combinations
of x1 and x2. Similarly as for X1, X2 is a proper, closed linear subspace of X, therefore by
Riesz’s Lemma ∃ x3 ∈ B(0X ; 1) such that

‖x3 − z‖ ≥
1

2
, ∀ z ∈ X2 .

We proceed as above for any n = 3, 4, . . .: from the previous n − 1 steps, we consider the
set Xn := 〈x1, . . . , xn〉, where xj ∈ B(0X ; 1) ∀ j = 1, . . . , n and Xn is a proper, closed linear

subspace of X (dimXn = n vs dimX =∞). Therefore ∃ xn+1 ∈ B(0X ; 1) such that

‖xn+1 − z‖ ≥
1

2
, ∀ z ∈ Xn ,

and so on.
We also notice that these subspaces are nested (X1 ⊂ X2 ⊂ . . . ⊂ Xn ⊂ Xn+1 ⊂ . . .) and by

construction

‖xj − xk‖ ≥
1

2
, ∀ j, k ∈ N .

This implies that such a sequence {xn} ⊂ B(0X ; 1) is not Cauchy. Thus, any subsequence
{xnk

} is also not Cauchy, therefore it is not convergent.
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