Here you can find my Teaching Statement and my Teaching Dossier (last update: February 2024).

Some food for thought:
When Will I Ever Use Math?
Why do we have to learn proofs!?

Emory teaching

  • MATH 789R Topics in Computational Mathematics - Approximation Theory (Fall 2024): syllabus.
  • MATH 318 Complex Variables (Fall 2024): syllabus.
  • MATH 250 Foundamentals of Mathematics (Spring 2024): syllabus.
  • Past teaching

    SMU

  • MATH 2303 Differential Equations I (Winter 2023): syllabus.
  • MATH 3441 Real Analysis I (Fall 2022): syllabus.
  • MATH 3406 Differential Equations II (Winter 2022): syllabus.
  • MATH 4442 Real Analysis II (Winter 2022): syllabus.
  • MATH 3441 Real Analysis I (Fall 2021): syllabus.
    • Why do we care about metric spaces? (scribbles): Fréchet.
    • Pointwise vs Uniform Convergence (scribbles): pointwise VS uniform.
    • Closed unit ball in normed vector spaces: unit ball.
    • The Cantor set and the Devil's staircase: Cantor set.
  • JAC

  • MATH NYB Calculus II (Fall and Winter 2019): syllabus.
  • MATH 015 Algebra and Trigonometry (Fall and Winter 2019): syllabus.
  • CSU

  • MATH 530 Mathematics for Scientists and Engineers (Fall 2018): syllabus.
  • MATH 345 Differential Equations (Spring 2018 - Honors course): syllabus.
  • MATH 317 Advanced Calculus of One Variable (Fall 2017): syllabus for my section (MATH 317-01).
  • MATH 369 Linear Algebra (Spring 2017): syllabus for my section (MATH 369-05).
  • CU

  • Instructor: MATH 205 Section C (Winter 2011) and Section A (Fall 2011).
  • Tutor: MATH 201 (Winter 2014).
  • Technical Assistant: WEBWorK system for the courses MATH 200-201-202-203-204-205 (Fall 2012 till Summer 2014).
  • Projects

    I've been developing some little didactic projects over the years: Github repositories.
    The programming languages I'm familiar with are: HTML, C++, Java, Python. I also have many years of experience with using Matlab and Maple.